• Title/Summary/Keyword: nonparametric MLE

Search Result 5, Processing Time 0.021 seconds

Nonparametric Estimation for Ramp Stress Tests with Stress Bound under Intermittent Inspection (단속적 검사에서 스트레스한계를 가지는 램프스트레스시험을 위한 비모수적 추정)

  • Lee Nak-Young;Ahn Ung-Hwan
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.4
    • /
    • pp.208-219
    • /
    • 2004
  • This paper considers a nonparametric estimation of lifetime distribution for ramp stress tests with stress bound under intermittent inspection. The test items are inspected only at specified time points an⊂1 so the collected observations are grouped data. Under the cumulative exposure model, two nonparametric estimation methods of estimating the lifetime distribution at use condition stress are proposed for the situation which the time transformation function relating stress to lifetime is a type of the inverse power law. Each of items is initially put on test under ramp stress and then survivors are put on test under constant stress, where all failures in the Inspection interval are assumed to occur at the midi)oint or the endpoint of that interval. Two proposed estimators of quantile from grouped data consisting of the number of items failed in each inspection interval are numerically compared with the maximum likelihood estimator(MLE) based on Weibull distribution.

ML estimation using Poisson HGLM approach in semi-parametric frailty models

  • Ha, Il Do
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1389-1397
    • /
    • 2016
  • Semi-parametric frailty model with nonparametric baseline hazards has been widely used for the analyses of clustered survival-time data. The frailty models can be fitted via an auxiliary Poisson hierarchical generalized linear model (HGLM). For the inferences of the frailty model marginal likelihood, which gives MLE, is often used. The marginal likelihood is usually obtained by integrating out random effects, but it often requires an intractable integration. In this paper, we propose to obtain the MLE via Laplace approximation using a Poisson HGLM approach for semi-parametric frailty model. The proposed HGLM approach uses hierarchical-likelihood (h-likelihood), which avoids integration itself. The proposed method is illustrated using a numerical study.

Estimation of Product Reliability with Incomplete Field Warranty Data (불완전한 사용현장 보증 데이터를 이용한 제품 신뢰도 추정)

  • Lim, Tae-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.4
    • /
    • pp.368-378
    • /
    • 2002
  • As more companies are equipped with data aquisition systems for their products, huge amount of field warranty data has been accumulated. We focus on the case when the field data for a given product comprise with the number of sales and the number of the first failures for each period. The number of censored items and their ages are assumed to be given. This type of data are incomplete in the sense that the age of a failed item is unknown. We construct a model for this type of data and propose an algorithm for nonparametric maximum likelihood estimation of the product reliability. Unlike the nonhomogeneous Poisson process(NHPP) model, our method can handle the data with censored items as well as those with small population. A few examples are investigated to characterize our model, and a real field warranty data set is analyzed by the method.

A Comparative Study on Nonparametric Reliability Estimation for Koziol-Green Model with Random Censorship

  • Cha, Young-Joon;Lee, Jae-Man
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.2
    • /
    • pp.231-237
    • /
    • 1997
  • The Koziol-Green(KG) model has become an important topic in industrial life testing. In this paper we suggest MLE of the reliability function for the Weibull distribution under the KG model. Futhermore, we compare Kaplan-Meier estimator, Nelson estimator, Cheng & Chang estimator, and Ebrahimi estimator with proposed estimator for the reliability function under the KG model.

  • PDF