• Title/Summary/Keyword: nonnegative matrix factorization

Search Result 41, Processing Time 0.036 seconds

Nonnegative Matrix Factorization with Orthogonality Constraints

  • Yoo, Ji-Ho;Choi, Seung-Jin
    • Journal of Computing Science and Engineering
    • /
    • v.4 no.2
    • /
    • pp.97-109
    • /
    • 2010
  • Nonnegative matrix factorization (NMF) is a popular method for multivariate analysis of nonnegative data, which is to decompose a data matrix into a product of two factor matrices with all entries restricted to be nonnegative. NMF was shown to be useful in a task of clustering (especially document clustering), but in some cases NMF produces the results inappropriate to the clustering problems. In this paper, we present an algorithm for orthogonal nonnegative matrix factorization, where an orthogonality constraint is imposed on the nonnegative decomposition of a term-document matrix. The result of orthogonal NMF can be clearly interpreted for the clustering problems, and also the performance of clustering is usually better than that of the NMF. We develop multiplicative updates directly from true gradient on Stiefel manifold, whereas existing algorithms consider additive orthogonality constraints. Experiments on several different document data sets show our orthogonal NMF algorithms perform better in a task of clustering, compared to the standard NMF and an existing orthogonal NMF.

Orthogonal Nonnegative Matrix Factorization: Multiplicative Updates on Stiefel Manifolds (Stiefel 다양체에서 곱셈의 업데이트를 이용한 비음수 행렬의 직교 분해)

  • Yoo, Ji-Ho;Choi, Seung-Jin
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.5
    • /
    • pp.347-352
    • /
    • 2009
  • Nonnegative matrix factorization (NMF) is a popular method for multivariate analysis of nonnegative data, the goal of which is decompose a data matrix into a product of two factor matrices with all entries in factor matrices restricted to be nonnegative. NMF was shown to be useful in a task of clustering (especially document clustering). In this paper we present an algorithm for orthogonal nonnegative matrix factorization, where an orthogonality constraint is imposed on the nonnegative decomposition of a term-document matrix. We develop multiplicative updates directly from true gradient on Stiefel manifold, whereas existing algorithms consider additive orthogonality constraints. Experiments on several different document data sets show our orthogonal NMF algorithms perform better in a task of clustering, compared to the standard NMF and an existing orthogonal NMF.

Nonnegative Tucker Decomposition (텐서의 비음수 Tucker 분해)

  • Kim, Yong-Deok;Choi, Seung-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.296-300
    • /
    • 2008
  • Nonnegative tensor factorization(NTF) is a recent multiway(multilineal) extension of nonnegative matrix factorization(NMF), where nonnegativity constraints are imposed on the CANDECOMP/PARAFAC model. In this paper we consider the Tucker model with nonnegativity constraints and develop a new tensor factorization method, referred to as nonnegative Tucker decomposition (NTD). We derive multiplicative updating algorithms for various discrepancy measures: least square error function, I-divergence, and $\alpha$-divergence.

Speech Enhancement Using Nonnegative Matrix Factorization with Temporal Continuity (시간 연속성을 갖는 비음수 행렬 분해를 이용한 음질 개선)

  • Nam, Seung-Hyon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.240-246
    • /
    • 2015
  • In this paper, speech enhancement using nonnegative matrix factorization with temporal continuity has been addressed. Speech and noise signals are modeled as Possion distributions, and basis vectors and gain vectors of NMF are modeled as Gamma distributions. Temporal continuity of the gain vector is known to be critical to the quality of enhanced speech signals. In this paper, temporal continiuty is implemented by adopting Gamma-Markov chain priors for noise gain vectors during the separation phase. Simulation results show that the Gamma-Markov chain models temporal continuity of noise signals and track changes in noise effectively.

Dual graph-regularized Constrained Nonnegative Matrix Factorization for Image Clustering

  • Sun, Jing;Cai, Xibiao;Sun, Fuming;Hong, Richang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2607-2627
    • /
    • 2017
  • Nonnegative matrix factorization (NMF) has received considerable attention due to its effectiveness of reducing high dimensional data and importance of producing a parts-based image representation. Most of existing NMF variants attempt to address the assertion that the observed data distribute on a nonlinear low-dimensional manifold. However, recent research results showed that not only the observed data but also the features lie on the low-dimensional manifolds. In addition, a few hard priori label information is available and thus helps to uncover the intrinsic geometrical and discriminative structures of the data space. Motivated by the two aspects above mentioned, we propose a novel algorithm to enhance the effectiveness of image representation, called Dual graph-regularized Constrained Nonnegative Matrix Factorization (DCNMF). The underlying philosophy of the proposed method is that it not only considers the geometric structures of the data manifold and the feature manifold simultaneously, but also mines valuable information from a few known labeled examples. These schemes will improve the performance of image representation and thus enhance the effectiveness of image classification. Extensive experiments on common benchmarks demonstrated that DCNMF has its superiority in image classification compared with state-of-the-art methods.

Online Monaural Ambient Sound Extraction based on Nonnegative Matrix Factorization Method for Audio Contents (오디오 컨텐츠를 위한 비음수 행렬 분해 기법 기반의 실시간 단일채널 배경 잡음 추출 기법)

  • Lee, Seokjin
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.819-825
    • /
    • 2014
  • In this paper, monaural ambient component extraction algorithm based on nonnegative matrix factorization (NMF) is described. The ambience component extraction algorithm in this paper is developed for audio upmixing system; Recent researches have shown that they can enhance listener envelopment if the extracted ambient signal is applied into the multichannel audio upmixing system. However, the conventional method stores all of the audio signal and processes all at once, so it cannot be applied to streaming system and digital signal processor (DSP) system. In this paper, the ambient component extraction algorithm based on on-line nonnegative matrix factorization is developed and evaluated to solve the problem. As a result of analysis of the processed signal with spectral flatness measures in the experiment, it was shown that the developed system can extract the ambient signal similarly with the conventional batch process system.

Recovery of Lost Speech Segments Using Incremental Subspace Learning

  • Huang, Jianjun;Zhang, Xiongwei;Zhang, Yafei
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.645-648
    • /
    • 2012
  • An incremental subspace learning scheme to recover lost speech segments online is presented. Our contributions in this work are twofold. First, the recovery problem is transformed into an interpolation problem of the time-varying gains via nonnegative matrix factorization. Second, incremental nonnegative matrix factorization is employed to allow online processing and track the evolution of speech statistics. The effectiveness of the proposed scheme is confirmed by the experiment results.

Vehicle Face Recognition Algorithm Based on Weighted Nonnegative Matrix Factorization with Double Regularization Terms

  • Shi, Chunhe;Wu, Chengdong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2171-2185
    • /
    • 2020
  • In order to judge that whether the vehicles in different images which are captured by surveillance cameras represent the same vehicle or not, we proposed a novel vehicle face recognition algorithm based on improved Nonnegative Matrix Factorization (NMF), different from traditional vehicle recognition algorithms, there are fewer effective features in vehicle face image than in whole vehicle image in general, which brings certain difficulty to recognition. The innovations mainly include the following two aspects: 1) we proposed a novel idea that the vehicle type can be determined by a few key regions of the vehicle face such as logo, grille and so on; 2) Through adding weight, sparseness and classification property constraints to the NMF model, we can acquire the effective feature bases that represent the key regions of vehicle face image. Experimental results show that the proposed algorithm not only achieve a high correct recognition rate, but also has a strong robustness to some non-cooperative factors such as illumination variation.

Illumination Estimation Based on Nonnegative Matrix Factorization with Dominant Chromaticity Analysis (주색도 분석을 적용한 비음수 행렬 분해 기반의 광원 추정)

  • Lee, Ji-Heon;Kim, Dae-Chul;Ha, Yeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.89-96
    • /
    • 2015
  • Human visual system has chromatic adaptation to determine the color of an object regardless of illumination, whereas digital camera records illumination and reflectance together, giving the color appearance of the scene varied under different illumination. NMFsc(nonnegative matrix factorization with sparseness constraint) was recently introduced to estimate original object color by using sparseness constraint. In NMFsc, low sparseness constraint is used to estimate illumination and high sparseness constraint is used to estimate reflectance. However, NMFsc has an illumination estimation error for images with large uniform area, which is considered as dominant chromaticity. To overcome the defects of NMFsc, illumination estimation via nonnegative matrix factorization with dominant chromaticity image is proposed. First, image is converted to chromaticity color space and analyzed by chromaticity histogram. Chromaticity histogram segments the original image into similar chromaticity images. A segmented region with the lowest standard deviation is determined as dominant chromaticity region. Next, dominant chromaticity is removed in the original image. Then, illumination estimation using nonnegative matrix factorization is performed on the image without dominant chromaticity. To evaluate the proposed method, experimental results are analyzed by average angular error in the real world dataset and it has shown that the proposed method with 5.5 average angular error achieve better illuminant estimation over the previous method with 5.7 average angular error.

Blind Rhythmic Source Separation (블라인드 방식의 리듬 음원 분리)

  • Kim, Min-Je;Yoo, Ji-Ho;Kang, Kyeong-Ok;Choi, Seung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.697-705
    • /
    • 2009
  • An unsupervised (blind) method is proposed aiming at extracting rhythmic sources from commercial polyphonic music whose number of channels is limited to one. Commercial music signals are not usually provided with more than two channels while they often contain multiple instruments including singing voice. Therefore, instead of using conventional modeling of mixing environments or statistical characteristics, we should introduce other source-specific characteristics for separating or extracting sources in the under determined environments. In this paper, we concentrate on extracting rhythmic sources from the mixture with the other harmonic sources. An extension of nonnegative matrix factorization (NMF), which is called nonnegative matrix partial co-factorization (NMPCF), is used to analyze multiple relationships between spectral and temporal properties in the given input matrices. Moreover, temporal repeatability of the rhythmic sound sources is implicated as a common rhythmic property among segments of an input mixture signal. The proposed method shows acceptable, but not superior separation quality to referred prior knowledge-based drum source separation systems, but it has better applicability due to its blind manner in separation, for example, when there is no prior information or the target rhythmic source is irregular.