• 제목/요약/키워드: nonlocal stress-strain relation

검색결과 5건 처리시간 0.015초

Static bending study of AFG nanobeam using local stress-and strain-driven nonlocal integral models

  • Yuan Tang;Hai Qing
    • Advances in nano research
    • /
    • 제16권3호
    • /
    • pp.265-272
    • /
    • 2024
  • In this paper, the problem of static bending of axially functionally graded (AFG) nanobeam is formulated with the local stress(Lσ)- and strain-driven(εD) two-phase local/nonlocal integral models (TPNIMs). The novelty of the present study aims to compare the size-effects of nonlocal integral models on bending deflections of AFG Euler-Bernoulli nano-beams. The integral relation between strain and nonlocal stress components based on two types nonlocal integral models is transformed unitedly and equivalently into differential form with constitutive boundary conditions. Purely LσD- and εD-NIMs would lead to ill-posed mathematical formulation, and Purely εD- and LσD-nonlocal differential models (NDM) may result in inconsistent size-dependent bending responses. The general differential quadrature method is applied to obtain the numerical results for bending deflection and moment of AFG nanobeam subjected to different boundary and loading conditions. The influence of AFG index, nonlocal models, and nonlocal parameters on the bending deflections of AFG Euler-Bernoulli nanobeams is investigated numerically. A consistent softening effects can be obtained for both LσD- and εD-TPNIMs. The results from current work may provide useful guidelines for designing and optimizing AFG Euler-Bernoulli beam based nano instruments.

Nonlocal finite element modeling of the tribological behavior of nano-structured materials

  • Mahmoud, F.F.;Meletis, E.I.
    • Interaction and multiscale mechanics
    • /
    • 제3권3호
    • /
    • pp.267-276
    • /
    • 2010
  • A nonlocal finite element model is developed for solving elasto-static frictional contact problems of nanostructures and nanoscale devices. A two dimensional Eringen-type nonlocal elasticity model is adopted. The material is characterized by a stress-strain constitutive relation of a convolution integral form whose kernel is capable to take into account both the diffusion process of nonlocal elasticity and the scale ratio effects. The incremental convex programming procedure is exploited as a solver. Two examples of different nature are presented, the first one presents the behavior of a nanoscale contacting system and the second example discusses the nano-indentation problem.

Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes

  • Daikh, Ahmed Amine;Drai, Ahmed;Houari, Mohamed Sid Ahmed;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 재36권6호
    • /
    • pp.643-656
    • /
    • 2020
  • This article presents a comprehensive static analysis of simply supported cross-ply carbon nanotubes reinforced composite (CNTRC) laminated nanobeams under various loading profiles. The nonlocal strain gradient constitutive relation is exploited to present the size-dependence of nano-scale. New higher shear deformation beam theory with hyperbolic function is proposed to satisfy the zero-shear effect at boundaries and parabolic variation through the thickness. Carbon nanotubes (CNTs), as the reinforced elements, are distributed through the beam thickness with different distribution functions, which are, uniform distribution (UD-CNTRC), V- distribution (FG-V CNTRC), O- distribution (FG-O CNTRC) and X- distribution (FG-X CNTRC). The equilibrium equations are derived, and Fourier series function are used to solve the obtained differential equation and get the response of nanobeam under uniform, linear or sinusoidal mechanical loadings. Numerical results are obtained to present influences of CNTs reinforcement patterns, composite laminate structure, nonlocal parameter, length scale parameter, geometric parameters on center deflection ad stresses of CNTRC laminated nanobeams. The proposed model is effective in analysis and design of composite structure ranging from macro-scale to nano-scale.

Free vibration analysis of nonlocal viscoelastic nanobeam with holes and elastic foundations by Navier analytical method

  • Ola A. Siam;Rabab A. Shanab;Mohamed A. Eltaher;Norhan A. Mohamed
    • Advances in aircraft and spacecraft science
    • /
    • 제10권3호
    • /
    • pp.257-279
    • /
    • 2023
  • This manuscript is dedicated to deriving the closed form solutions of free vibration of viscoelastic nanobeam embedded in an elastic medium using nonlocal differential Eringen elasticity theory that not considered before. The kinematic displacements of Euler-Bernoulli and Timoshenko theories are developed to consider the thin nanobeam structure (i.e., zero shear strain/stress) and moderated thick nanobeam (with constant shear strain/stress). To consider the internal damping viscoelastic effect of the structure, Kelvin/Voigt constitutive relation is proposed. The perforation geometry is intended by uniform symmetric squared holes arranged array with equal space. The partial differential equations of motion and boundary conditions of viscoelastic perforated nonlocal nanobeam with elastic foundation are derived by Hamilton principle. Closed form solutions of damped and natural frequencies are evaluated explicitly and verified with prestigious studies. Parametric studies are performed to signify the impact of elastic foundation parameters, viscoelastic coefficients, nanoscale, supporting boundary conditions, and perforation geometry on the dynamic behavior. The closed form solutions can be implemented in the analysis of viscoelastic NEMS/MEMS with perforations and embedded in elastic medium.

Wave propagation in a nonlocal prestressed piezoelectric polygonal plate with non-homogeneity and hygroscopic effect

  • Rajendran Selvamani;Hepzibah Christinal;Farzad Ebrahimi
    • Advances in materials Research
    • /
    • 제12권4호
    • /
    • pp.309-330
    • /
    • 2023
  • The humid thermal vibration characteristics of a nonhomogeneous thermopiezoelectric nonlocal plate of polygonal shape are addressed in the purview of generalized nonlocal thermoelasticity. The plate is initially stressed, and the three-dimensional linear elasticity equations are taken to form motion equations. The problem is solved using the Fourier expansion collocation method along the irregular boundary conditions. The numerical results of physical variables have been discussed for the triangle, square, pentagon, and hexagon shapes of the plates and are given as dispersion curves. The amplitude of non-dimensional frequencies is tabulated for the longitudinal and flexural symmetric modes of the thermopiezoelectric plate via moisture and thermal constants. Also, a comparison of numerical results is made with existing literature, and good agreement is reached.