• Title/Summary/Keyword: nonlocal small scale

Search Result 141, Processing Time 0.033 seconds

Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory

  • Timesli, Abdelaziz
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.69-82
    • /
    • 2020
  • In this paper, a new explicit analytical formula is derived for the critical buckling load of Double Walled Carbon Nanotubes (DWCNTs) embedded in Winkler elastic medium without taking into account the effects of the nonlocal parameter, which indicates the effects of the surrounding elastic matrix combined with the intertube Van der Waals (VdW) forces. Furthermore, we present a model which predicts that the critical axial buckling load embedded in Winkler, Pasternak or Kerr elastic medium under axial compression using the nonlocal Donnell shell theory, this model takes into account the effects of internal small length scale and the VdW interactions between the inner and outer nanotubes. The present model predicts that the critical axial buckling load of embedded DWCNTs is greater than that without medium under identical conditions and parameters. We can conclude that the embedded DWCNTs are less susceptible to axial buckling than those without medium.

Non-local orthotropic elastic shell model for vibration analysis of protein microtubules

  • Taj, Muhammad;Majeed, Afnan;Hussain, Muzamal;Naeem, Muhammad N.;Safeer, Muhammad;Ahmad, Manzoor;Khan, Hidayat Ullah;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.245-253
    • /
    • 2020
  • Vibrational analysis in microtubules is examined based on the nonlocal theory of elasticity. The complete analytical formulas for wave velocity are obtained and the results reveal that the small scale effects can reduce the frequency, especially for large longitudinal wave-vector and large circumferential wave number. It is seen that the small scale effects are more significant for smaller wave length. The methods and results may also support the design and application of nano devices such as micro sound generator etc. The effects of small scale parameters can increase vibrational frequencies of the protein microtubules and cannot be overlooked in the analysis of vibrating phenomena. The results for different modes with nonlocal effect are checked.

A nonlocal integral Timoshenko beam model for free vibration analysis of SWCNTs under thermal environment

  • Liani, Mohamed;Moulay, Noureddine;Bourada, Fouad;Addou, Farouk Yahia;Bourada, Mohamed;Tounsi, Abdelouahed;Hussain, Muzamal
    • Advances in materials Research
    • /
    • v.11 no.1
    • /
    • pp.1-22
    • /
    • 2022
  • In this paper, the nonlocal integral Timoshenko beam model is employed to study the free vibration characteristics of singled walled carbon nanotubes (SWCNTs) including the thermal effect. Based on the nonlocal continuum theory, the governing equations of motion are formulated by considering thermal effect. The influences of small scale parameter, the chirality of SWCNTs, the vibrational mode number, the aspect ratio of SWCNTs and temperature changes on the thermal vibration properties of single-walled nanotubes are examined and discussed. Results indicate significant dependence of natural frequencies on the nonlocal parameter, the temperature change, the aspect ratio and the chirality of SWCNTs. This work should be useful reference for the application and the design of nanoelectronics and nanoelectromechanical devices that make use of the thermal vibration properties of SWCNTs.

Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis

  • Asghar, Sehar;Naeem, Muhammad N.;Hussain, Muzamal;Taj, Muhammad;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.133-144
    • /
    • 2020
  • This paper aims to study vibration characteristics of chiral and zigzag double-walled carbon nanotubes entrenched on Donnell shell model. The Eringen's nonlocal elastic equations are being combined with Donnell shell theory to observe small scale response. Wave propagation is proposed technique to establish field equations of model subjected to four distinct end supports. A nonlocal model has been formulated to explore the frequency spectrum of both chiral and zigzag double-walled CNTs along with diversity of indices and nonlocal parameter. The significance of scale effect in relevance of length-to-diameter and thickness- to- radius ratios are discussed and displayed in detail. The numerical solution based on this nonlocal Donnell shell model can be further used to predict other frequency phenomena of double-walled and multi-walled CNTs.

Intelligent computer modelling and simulation for the large amplitude of nano systems

  • Yi, Wenjuan
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.63-75
    • /
    • 2022
  • The nonlinear dynamic behavior of a nonuniform small-scale nonlocal beam is investigated in this work. The nanobeam is theoretically modeled using the nonlocal Eringen theory, as well as a few of Von-nonlinear Kármán's theories and the classical beam theory. The Hamilton principle extracts partial differential equations (PDE) of an axially functionally graded (AFG) nano-scale beam consisting of SUS304 and Si3N4 throughout its length, and an elastic Winkler-Pasternak substrate supports the tapered AFG nanobeam. The beam thickness is a function of beam length, and it constantly varies throughout the length of the beam. The numerical solution strategy employs an iteration methodology connected with the generalized differential quadratic method (GDQM) to calculate the nonlinear outcomes. The nonlinear numerical results are presented in detail to examine the impact of various parameters such as nonlinear amplitude, nonlocal parameter, the component of the elastic foundation, rate of cross-section change, and volume fraction parameter on the linear and nonlinear free vibration characteristics of AFG nanobeam.

Intelligent simulation of the thermal buckling characteristics of a tapered functionally graded porosity-dependent rectangular small-scale beam

  • Shan, Xiaomin;Huang, Anzhong
    • Advances in nano research
    • /
    • v.12 no.3
    • /
    • pp.281-290
    • /
    • 2022
  • In the current research, the thermal buckling characteristics of the bi-directional functionally graded nano-scale tapered beam on the basis of a couple of nonlocal Eringen and classical beam theories are scrutinized. The nonlocal governing equation and associated nonlocal boundary conditions are constructed using the conservation energy principle, and the resulting equations are solved using the generalized differential quadrature method (GDQM). The mechanical characteristics of the produced material are altered along both the beam length and thickness direction, indicating that it is a two-dimensional functionally graded material (2D-FGM). It is thought that the nanostructures are defective because to the presence of porosity voids. Finally, the obtained results are used to design small-scale sensors and make an excellent panorama of developing the production of nanostructures.

On bending, buckling and vibration of graphene nanosheets based on the nonlocal theory

  • Liu, Jinjian;Chen, Ling;Xie, Feng;Fan, Xueliang;Li, Cheng
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.257-274
    • /
    • 2016
  • The nonlocal static bending, buckling, free and forced vibrations of graphene nanosheets are examined based on the Kirchhoff plate theory and Taylor expansion approach. The nonlocal nanoplate model incorporates the length scale parameter which can capture the small scale effect. The governing equations are derived using Hamilton's principle and the Navier-type solution is developed for simply-supported graphene nanosheets. The analytical results are proposed for deflection, natural frequency, amplitude of forced vibration and buckling load. Moreover, the effects of nonlocal parameter, half wave number and three-dimensional sizes on the static, dynamic and stability responses of the graphene nanosheets are discussed. Some illustrative examples are also addressed to verify the present model, methodology and solution. The results show that the new nanoplate model produces larger deflection, smaller circular frequencies, amplitude and buckling load compared with the classical model.

Computerized responses of spinning NEMS via numerical and mathematical modeling

  • Zhou, Lingao
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.629-641
    • /
    • 2022
  • This study deals with the spinning impact on flap-wise vibration characteristics of nonlocal functionally graded (FG) cylindrical beam based on the Hyperbolic shear deformation beam theory. The nonlocal strain gradient theory is used to investigate the small-scale impact on the nonlocal motion equation as well as corresponding nonlocal boundary conditions. Based on the mathematical simulation and according to the Hamilton principle, the computerized modeling of a rotating functionally graded nanotube is generated, and then, via a numerical approach, the obtained mathematical equations are solved. The calculated outcomes are helpful to the production of Nano-electro-mechanical-systems (NEMS) by investigating some designed parameters such as rotating speed, hub radius, length-scale parameters, volume fraction parameters, etc.

Size dependent bending analysis of micro/nano sandwich structures based on a nonlocal high order theory

  • Rahmani, Omid;Deyhim, Soroush;Hosseini, S. Amir Hossein
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.371-388
    • /
    • 2018
  • In this paper, a new model based on nonlocal high order theory is proposed to study the size effect on the bending of nano-sandwich beams with a compliance core. In this model, in contrast to most of the available sandwich theories, no prior assumptions are made with respect to the displacement field in the core. Herein the displacement and the stress fields of the core are obtained through an elasticity solution. Equations of motion and boundary conditions for nano-sandwich beam are derived by using Hamilton's principle and an analytical solution is presented for simply supported nano-sandwich beam. The results are validated with previous studies in the literature. These results can be utilized in the study of nano-sensors and nano-actuators. The effect of nonlocal parameter, Young's modulus of the core and aspect ratio on the deflection of the nano-sandwich beam is investigated. It is concluded that by including the small-scale effects, the deflection of the skins is increased and by increasing the nonlocal parameter, the influence of small-scale effects on the deflections is increased.

Elastic wave phenomenon of nanobeams including thickness stretching effect

  • Eyvazian, Arameh;Zhang, Chunwei;Musharavati, Farayi;Khan, Afrasyab;Mohamed, Abdeliazim Mustafa
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.271-280
    • /
    • 2021
  • The present work deals with an investigation on longitudinal wave propagation in nanobeams made of graphene sheets, for the first time. The nanobeam is modelled via a higher-order shear deformation theory accounts for both higher-order and thickness stretching terms. The general nonlocal strain gradient theory including nonlocality and strain gradient characteristics of size-dependency in order is used to examine the small-scale effects. This model has three-small scale coefficients in which two of them are for nonlocality and one of them applied for gradient effects. Hamilton supposition is applied to obtain the governing motion equation which is solved using a harmonic solution procedure. It is indicated that the longitudinal wave characteristics of the nanobeams are significantly influenced by the nonlocal parameters and strain gradient parameter. It is shown that higher nonlocal parameter is more efficient than lower nonlocal parameter to change longitudinal phase velocities, while the strain gradient parameter is the determining factor for their efficiency on the results.