In this study, a 2-D finite element formulation in the frame of nonlocal integral elasticity is presented. Subsequently, the bending problem of a nanobeam under different types of loadings and boundary conditions is solved based on classical beam theory and also 3-D elasticity theory using nonlocal finite elements (NL-FEM). The obtained results are compared with the analytical and numerical results of nonlocal differential elasticity. It is concluded that the classical beam theory and the nonlocal differential elasticity can separately lead to significant errors for the problem under consideration as distinct from 3-D elasticity and nonlocal integral elasticity respectively.
The size-dependent behavior of single walled carbon nanotubes (SWCNT) embedded in the elastic medium and subjected to the initial axial force is investigated using the mixed finite element method. The SWCNT is assumed to be Euler-Bernoulli beam incorporating nonlocal theory developed by Eringen. The mixed finite element model shows its great advantage of dealing with nonlocal behavior of SWCNT subjected to a concentrated load owing to the existence of two coefficients ${\alpha}_1$ and ${\alpha}_2$. This is the first numerical approach to deal with a puzzling fact of nonlocal theory with concentrated load. Numerical examples are performed to show the accuracy and efficiency of the present method. In addition, parametric study is carefully carried out to point out the influences of nonlocal effect, the elastic medium, and the initial axial force on the behavior of the carbon nanotubes.
The present study conducts a thorough analysis of thermal vibrations in functionally graded porous nanocomposite beams within a thermal setting. Investigating the temperature-dependent material properties of these beams, which continuously vary across their thickness in accordance with a power-law function, a finite element approach is developed. This approach utilizes a nonlocal strain gradient theory and accounts for a linear temperature rise. The analysis employs four different patterns of porosity distribution to characterize the functionally graded porous materials. A novel two-variable shear deformation beam nonlocal strain gradient theory, based on trigonometric functions, is introduced to examine the combined effects of nonlocal stress and strain gradient on these beams. The derived governing equations are solved through a 3-nodes beam element. A comprehensive parametric study delves into the influence of structural parameters, such as thicknessratio, beam length, nonlocal scale parameter, and strain gradient parameter. Furthermore, the study explores the impact of thermal effects, porosity distribution forms, and material distribution profiles on the free vibration of temperature-dependent FG nanobeams. The results reveal the substantial influence of these effects on the vibration behavior of functionally graded nanobeams under thermal conditions. This research presents a finite element approach to examine the thermo-mechanical behavior of nonlocal temperature-dependent FG nanobeams, filling the gap where analytical results are unavailable.
A nonlocal finite element model is developed for solving elasto-static frictional contact problems of nanostructures and nanoscale devices. A two dimensional Eringen-type nonlocal elasticity model is adopted. The material is characterized by a stress-strain constitutive relation of a convolution integral form whose kernel is capable to take into account both the diffusion process of nonlocal elasticity and the scale ratio effects. The incremental convex programming procedure is exploited as a solver. Two examples of different nature are presented, the first one presents the behavior of a nanoscale contacting system and the second example discusses the nano-indentation problem.
Higher-order theories are very important to investigate the mechanical properties and behaviors of nanoscale structures. In this study, a free vibration behavior of SiNW resting on elastic foundation is investigated via Eringen's nonlocal elasticity theory. Silicon Nanowire (SiNW) is modeled as simply supported both ends and clamped-free Euler-Bernoulli beam. Pasternak two-parameter elastic foundation model is used as foundation. Finite element formulation is obtained nonlocal Euler-Bernoulli beam theory. First, shape function of the Euler-Bernoulli beam is gained and then Galerkin weighted residual method is applied to the governing equations to obtain the stiffness and mass matrices including the foundation parameters and small scale parameter. Frequency values of SiNW is examined according to foundation and small scale parameters and the results are given by tables and graphs. The effects of small scale parameter, boundary conditions, foundation parameters on frequencies are investigated.
The main goal of this article is to develop the finite element formulation based on the nonlocal strain gradient and the refined higher-order deformation theory employing a new function f(z) to investigate the static bending and free vibration of functionally graded porous (FGP) nanobeams. The proposed model considers the simultaneous effects of two parameters: nonlocal and strain gradient coefficients. The nanobeam is made by FGP material that exists in un-even and logarithmic-uneven distribution. The governing equation of the nanobeam is established based on Hamilton's principle. The authors use a 2-node beam element, each node with 8 degrees of freedom (DOFs) approximated by the C1 and C2 continuous Hermit functions to obtain the elemental stiffness matrix and mass matrix. The accuracy of the proposed model is tested by comparison with the results of reputable published works. From here, the influences of the parameters: nonlocal elasticity, strain gradient, porosity, and boundary conditions are studied.
Messai, Abderraouf;Fortas, Lahcene;Merzouki, Tarek;Houari, Mohammed Sid Ahmed
Structural Engineering and Mechanics
/
제81권4호
/
pp.461-479
/
2022
A finite element method analysis framework is introduced for the free vibration analyses of functionally graded porous beam structures by employing two variables trigonometric shear deformation theory. Both Young's modulus and material density of the FGP beam element are simultaneously considered as grading through the thickness of the beam. The finite element approach is developed using a nonlocal strain gradient theory. The governing equations derived here are solved introducing a 3-nodes beam element. A comprehensive parametric study is carried out, with a particular focus on the effects of various structural parameters such as the dispersion patterns of GPL reinforcements and porosity, thickness ratio, boundary conditions, nonlocal scale parameter and strain gradient parameters. The results indicate that porosity distribution and GPL pattern have significant effects on the response of the nanocomposite beams.
This study explores the linear and nonlinear solutions of sigmoid functionally graded material (S-FGM) nanoplate with porous effects. A size-dependent numerical solution is established using the strain gradient theory and isogeometric finite element formulation. The nonlinear nonlocal strain gradient is developed based on the Reissner-Mindlin plate theory and the Von-Karman strain assumption. The sigmoid function is utilized to modify the classical functionally graded material to ensure the constituent volume distribution. Two different patterns of porosity distribution are investigated, viz. pattern A and pattern B, in which the porosities are symmetric and asymmetric varied across the plate's thickness, respectively. The nonlinear finite element governing equations are established for bending analysis of S-FGM nanoplates, and the Newton-Raphson iteration technique is derived from the nonlinear responses. The isogeometric finite element method is the most suitable numerical method because it can satisfy a higher-order derivative requirement of the nonlocal strain gradient theory. Several numerical results are presented to investigate the influences of porosity distributions, power indexes, aspect ratios, nonlocal and strain gradient parameters on the porous S-FGM nanoplate's linear and nonlinear bending responses.
Al-Maliki, Ammar F.H.;Faleh, Nadhim M.;Alasadi, Abbas A.
Structural Monitoring and Maintenance
/
제6권2호
/
pp.147-159
/
2019
In present article, a size-dependent refined thick beam element has been established based upon nonlocal elasticity theory. Next, it is used to explore vibration response of porous metal foam nanobeams on elastic medium. The established beam element introduces ten degrees of freedom. Different porosity distributions called uniform, symmetric and asymmetric will be employed. Herein, introduced thick beam element contains shear deformations without using correction factors. Convergence and verification studies of obtained results from finite element method are also provided. The impacts of nonlocality factor, foundation factors, shear deformation, slenderness ratio, porosity kinds and porosity factor on vibration frequencies of metal foam nano-sized beams have been explored.
This article presented a nanoscale modified continuum model to investigate the free vibration of functionally graded (FG) porous nanobeam by using finite element method. The main novelty of this manuscript is presenting effects of four different porosity models on vibration behaviors of nonlocal nanobeam structure including size effect, that not be discussed before The proposed porosity models are, uniform porosity distribution, symmetric with mid-plane, bottom surface distribution and top surface distribution. The nano-scale effect is included in modified model by using the differential nonlocal continuum theory of Eringen that adding the length scale into the constitutive equations as a material parameter constant. The graded material is distributed through the beam thickness by a generalized power law function. The beam is simply supported, and it is assumed to be thin. Therefore, the kinematic assumptions of Euler-Bernoulli beam theory are held. The mathematical model is solved numerically using the finite element method. Results demonstrate effects of porosity type, material gradation, and nanoscale parameters on the free vibration of nanobeam. The proposed model is effective in vibration analysis of NEMS structure manufactured by porous functionally graded materials.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.