• Title/Summary/Keyword: nonlinear viscous dampers

Search Result 28, Processing Time 0.021 seconds

Effect of near and far-field earthquakes on RC bridge with and without damper

  • Soureshjani, Omid Karimzade;Massumi, Ali
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.533-543
    • /
    • 2019
  • This paper presents a study on the behavior of an RC bridge under near-field and far-field ground motions. For this purpose, a dynamic nonlinear finite element time history analysis has been conducted. The near-field and far-field records are chosen pairwise from the same events which are fits to the seismic design of the bridge. In order to perform an accurate seismic evaluation, the model has been analyzed under two vertical and horizontal components of ground motions. Parameters of relative displacement, residual displacement, and maximum plastic strain have been considered and compared in terms of near-field and far-field ground motions. In the following, in order to decrease the undesirable effects of near-field ground motions, a viscous damper is suggested and its effects have been studied. In this case, the results show that the near-field ground motions increase maximum relative and residual displacement respectively up to three and twice times. Significant seismic improvements were achieved by using viscous dampers on the bridge model. Somehow under the considered near-field ground motion, parameters of residual and relative displacement decrease dramatically even less than the model without damper under the far-field record of the same ground motion.

Seismic fragility assessment of steel moment-resisting frames equipped with superelastic viscous dampers

  • Abbas Ghasemi;Fatemeh Arkavazi;Hamzeh Shakib
    • Earthquakes and Structures
    • /
    • v.25 no.5
    • /
    • pp.343-358
    • /
    • 2023
  • The superelastic viscous damper (SVD) is a hybrid passive control device comprising a viscoelastic damper and shape memory alloy (SMA) cables connected in series. The SVD is an innovative damper through which a large amount of seismic energy can dissipate. The current study assessed the seismic collapse induced by steel moment-resisting frames (SMRFs) equipped with SVDs and compared them with the performance of special MRFs and buckling restrained brace frames (BRBFs). For this purpose, nonlinear dynamic and incremental dynamic analysis (IDA) were conducted in OpenSees software. Both 5- and 9-story special MRFs, BRBFs, and MRFs equipped with the SVDs were examined. The results indicated that the annual exceedance rate for maximum residual drifts of 0.2% and 0.5% for the BRBFs and MRFs with SVDs, respectively, were considerably less than for SMRFs with reduced-beam section (RBS) connections and that the seismic performances of these structures were enhanced with the use of the BRB and SVD. The probability of collapse due to residual drift in the SVD, BRB, and RBS frames in the 9-story structure was 1.45, 1.75, and 1.05 times greater than for the 5-story frame.

Development of Computer Program for Seismic Response Analysis of Base Isolated Structures (면진 구조물의 지진응답 해석 프로그램 개발)

  • 정정훈;허영철;김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.348-355
    • /
    • 2001
  • A computer program named \"NLDA-BIS\", which runs under the MATLAB environment, is developed fur seismic response analysis of base isolated structures. This program can explicitly model the various nonlinear isolation elements such as elastomeric bearings, sliding bearings and general viscous dampers, and so on. Newmark'\`s constant average acceleration method fur calculating the responses in time domain and the iterative pseudo-force method for treating the nonlinear isolation forces are adopted. For capturing the hysteretic behavior of isolation elements, the modified Wen's equations are adopted and solved by the numerical differentiation formula method. To verify the validity of the developed program, the seismic responses of a six-story reinforced concrete base isolated structure are calculated and compared with results obtained by the program \"3D-BASIS\" developed at the State University of New York at Buffalo which is the most widely used code far analyzing isolated structures today.ed structures today.

  • PDF

Seismic response Analysis of Building Structures considering the Nonlinear Property of Viscoelastic Dampers (점탄성 댐퍼의 비선형 특성을 고려한 건물의 지진응답해석)

  • Choi, Hyun;Kim, Doo-Hun;Min, Kyung-Won;Lee, Sang-Jo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.228-235
    • /
    • 1999
  • As a seismic damper the viscoelastic damper is known the effective method to control the drift of the flexible building. As the viscoelastic damper has the characteristics of both damping and stiffness specially when the rubber material used hysteretic damping. The behavior of the hysteretic damping is quite different from that of the viscous damping. For the evaluation of the viscoelastic damper for the seismic purpose the nonlinear response spectrum was generated based on the dynamic test of the viscoelastic damper and the results is compared to that of the typical linear response spectrum,

  • PDF

A Study for Damping Application to Response-controlled Structure

  • Shinozaki, Yozo;Mogi, Yoshihiro;Ota, Masaaki;Yoshikawa, Hiroaki
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.2
    • /
    • pp.149-164
    • /
    • 2021
  • Most of high-rise buildings in Japan*1 are structure with damping systems recently. The design procedure is performance-based design (PBD), which is based on the nonlinear response history procedure (NRHP) using 2 or 3-dimentional frame model. In addition, hysteretic property of steel plates or velocity-dependent property of viscous dampers are common practice for the damping system. However, for the selection of damping system, the easy dynamic analysis of recent date may lead the most of engineers to focus attention on the maximum response only without thinking how it shakes. By nature, the seismic design shall be to figure out the action of inertia forces by complex & dynamic loads including periodic and pulse-like characteristics, what we call seismic ground motion. And it shall be done under the dynamic condition. On the contrary, we engineers engineers have constructed the easy-to-use static loads and devoted ourselves to handle them. The structures with damping system shall be designed considering how the stiffness & damping to be applied to the structures against the inertia forces with the viewpoint of dynamic aspect. In this paper we reconsider the role of damping in vibration and give much thought to the basic of shake with damping from a standpoint of structural design. Then, we present some design examples based on them.

Characterizing nonlinear oscillation behavior of an MRF variable rotational stiffness device

  • Yu, Yang;Li, Yancheng;Li, Jianchun;Gu, Xiaoyu
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.303-317
    • /
    • 2019
  • Magneto-rheological fluid (MRF) rotatory dampers are normally used for controlling the constant rotation of machines and engines. In this research, such a device is proposed to act as variable stiffness device to alleviate the rotational oscillation existing in the many engineering applications, such as motor. Under such thought, the main purpose of this work is to characterize the nonlinear torque-angular displacement/angular velocity responses of an MRF based variable stiffness device in oscillatory motion. A rotational hysteresis model, consisting of a rotatory spring, a rotatory viscous damping element and an error function-based hysteresis element, is proposed, which is capable of describing the unique dynamical characteristics of this smart device. To estimate the optimal model parameters, a modified whale optimization algorithm (MWOA) is employed on the captured experimental data of torque, angular displacement and angular velocity under various excitation conditions. In MWOA, a nonlinear algorithm parameter updating mechanism is adopted to replace the traditional linear one, enhancing the global search ability initially and the local search ability at the later stage of the algorithm evolution. Additionally, the immune operation is introduced in the whale individual selection, improving the identification accuracy of solution. Finally, the dynamic testing results are used to validate the performance of the proposed model and the effectiveness of the proposed optimization algorithm.

Comparative Study on Seismic Performance of Viscously Damped Self-Centering SDOF Systems with Elasto-Plastic SDOF Systems (점성 감쇠기를 가진 셀프 센터링 단자유도 시스템과 탄소성거동의 단자유도 시스템의 내진성능 비교에 관한 연구)

  • Kim, Hyung-Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.553-561
    • /
    • 2010
  • The purpose of this paper is to analytically find the approximate supplement damping ratio of the viscous damper installed in self-centering (SC) single-degree-of-freedom (SDOF) systems with maximum displacements that are similar to those of elasto-plastic (EP) SDOF systems. The behavior of an SC SDOF system under harmonic cyclic loading was first described. Then an analytical model that can capture the behavior of the viscously damped SC SDOF system was introduced. Analysis parameters that characterize the hysteresis of the EP and SC SDOF systems were chosen, and nonlinear time-history analyses were performed using 20 historical accelerograms. Most of the SC SDOF systems with viscous dampers with approximately 10-15% damping ratios presented mean maximum displacement values that were similar to those of the EP SDOF systems. To investigate in detail the seismic performance of both systems, three EP SDOF systems and six corresponding SC SDOF systems were selected. The analyses showed that all the SC SDOF systems eliminated the residual displacements after the end of their shaking, and that the SC SDOF systems with 15% damping ratios performed better than the EP SDOF systems in terms of maximum displacement and acceleration response.

Direct displacement based design of hybrid passive resistive truss girder frames

  • Shaghaghian, Amir Hamzeh;Dehkordi, Morteza Raissi;Eghbali, Mahdi
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.691-708
    • /
    • 2018
  • An innovative Hybrid Passive Resistive configuration for Truss Girder Frames (HPR-TGFs) is introduced in the present study. The proposed system is principally consisting of Fluid Viscous Dampers (FVDs) and Buckling Restrained Braces (BRBs) as its seismic resistive components. Concurrent utilization of these devices will develop an efficient energy dissipating mechanism which is able to mitigate lateral displacements as well as the base shear, simultaneously. However, under certain circumstances which the presence of FVDs might not be essential, the proposed configuration has the potential to incorporate double BRBs in order to achieve the redundancy of alternative load bearing paths. This study is extending the modern Direct Displacement Based Design (DDBD) procedure as the design methodology for HPR-TGF systems. Based on a series of nonlinear time history analysis, it is demonstrated that the design outcomes are almost identical to the pre-assumed design criteria. This implies that the ultimate characteristics of HPR-TGFs such as lateral stiffness and inter-story drifts are well-proportioned through the proposed design procedure.