• 제목/요약/키워드: nonlinear vibration control

검색결과 272건 처리시간 0.023초

공압능동제어를 이용한 저주파 영역에서의 공압제진대 제진성능 개선에 대한 연구 (Performance Enhancement of Pneumatic Vibration Isolation Tables in Low Frequency by Active Control)

  • 오기용;이정훈;김광준;신윤호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.903-908
    • /
    • 2006
  • As environmental vibration requirements on precision equipment become more stringent. use of pneumatic isolators has become more popular and their performance is subsequently required to be further improved. Dynamic performance of passive pneumatic isolators is related to various design parameters in a complicated manner and, hence, is very limited especially in low frequency range by volume of chambers. In this study, an active control technique, so called time delay control which is considered to be adequate for a low frequency or nonlinear system, is applied to a single chamber pneumatic isolator. The procedure of applying the time delay control law to the pneumatic isolator is presented and its effectiveness in enhancement of transmissibility performance is shown based on simulation and experiment. Comparison between passive and active pneumatic isolators is also presented.

  • PDF

인장력하에서 길이방향으로 이동하는 비선형 탄성현의 경계제어 (Boundary Control of an Axially Moving Nonlinear Tensioned Elastic String)

  • 박선규;이숙재;홍금식
    • 대한기계학회논문집A
    • /
    • 제28권1호
    • /
    • pp.11-21
    • /
    • 2004
  • In this paper, an active vibration control of a tensioned elastic axially moving string is investigated. The dynamics of the translating string ale described by a non-linear partial differential equation coupled with an ordinary differential equation. The time varying control in the form of the right boundary transverse motions is suggested to stabilize the transverse vibration of the translating continuum. A control law based on Lyapunov's second method is derived. Exponential stability of the translating string under boundary control is verified. The effectiveness of the proposed controller is shown through the simulations.

인휠모터 차량의 주행 안정화 제어 알고리즘 연구 (A control algorithm for driving stability improvement of in-wheel motors vehicle)

  • 최승회;김진성;허훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.206-211
    • /
    • 2011
  • In this paper, a control algorithm for the improvement of yaw and velocity stability of electrical vehicle with two or four in-wheel motors is proposed. The vehicle is modeled with independently operative in-wheel motor wheels. Different frictions on the wheels are regarded as disturbances, which causes driving instability. In this situation the proposed algorithm enables stabilizing the yaw motion and velocity of vehicle simultaneously. The proposed PID controller is composed with two techniques, which enhance the disturbance reject and point tracking performances. One is nonlinear gain function and the other one is improved integral controller operating as time based weight function. Simulation is conducted to reveal its efficient performance.

  • PDF

Waviness가 존재하며 볼의 원심력과 자이로스코픽 모멘트가 작용하는 볼베어링으로 지지된 5 자유도 회전계의 진동해석 (Vibration Analysis of 5-DOF Rotor System Supported by Two or More Ball Bearings Considering Centrifugal Force and Gyroscopic Moment of Ball)

  • 정성원;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.297-303
    • /
    • 2001
  • This research presents an analytical model to characterize the ball bearing vibration due to the waviness in a rigid rotor supported by multi-row ball bearings considering centrifugal force and gyroscopic moment of ball. The effects of centrifugal force and gyroscopic moment are introduced to the kinematic constraints and force equilibrium equations. The waviness of ball and races is modeled by the superposition of sinusoidal function and it is introduced to position vectors of race curvature center to use the Hertzian contact theory in order to calculate the elastic deflection and nonlinear contact force resulting from the waviness while the rotor has translational and angular motion. They can be determined by solving the nonlinear equations of motion with five degrees of freedom by using the Runge-Kutta-Fehlberg algorithm. The accuracy of this research is validated by comparing with the results of the prior researches. It characterizes the vibration frequencies resulting from the various kinds of waviness in rolling elements, the harmonic frequencies resulting from the nonlinear load-deflection characteristics of ball bearing resulting from the waviness interaction.

  • PDF

공압제진대용 이중챔버형 공압스프링의 복소강성 모형화 (Amplitude-dependent Complex Stiffness Modeling of Dual-chamber Pneumatic Spring for Pneumatic Vibration Isolation Table)

  • 이정훈;김광준
    • 한국소음진동공학회논문집
    • /
    • 제18권1호
    • /
    • pp.110-122
    • /
    • 2008
  • Pneumatic vibration isolator typically consisting of dual-chamber pneumatic springs and a rigid table are widely employed for proper operation of precision instruments such as optical devices or nano-scale equipments owing to their low stiffness- and high damping-characteristics. As environmental vibration regulations for precision instruments become more stringent, it is required to improve further the isolation performance. In order to facilitate their design optimization or active control, a more accurate mathematical model or complex stiffness is needed. Experimental results we obtained rigorously for a dual-chamber pneumatic spring exhibit significantly amplitude dependent behavior, which cannot be described by linear models in earlier researches. In this paper, an improvement for the complex stiffness model is presented by taking two major considerations. One is to consider the amplitude dependent complex stiffness of diaphragm necessarily employed for prevention of air leakage. The other is to employ a nonlinear model for the air flow in capillary tube connecting the two pneumatic chambers. The proposed amplitude-dependent complex stiffness model which reflects dependency on both frequency and excitation amplitude is shown to be very valid by comparison with the experimental measurements. Such an accurate nonlinear model for the dual-chamber pneumatic springs would contribute to more effective design or control of vibration isolation systems.

다중 션트회로에 연결된 압전세라믹을 이용한 비선형 패널 플러터의 수동적 억제 (Passive Suppression of Nonlinear Panel Flutter Using Piezoceramics with Multi Resonant Circuits)

  • 문성환;김승조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1204-1209
    • /
    • 2000
  • Many analytical and experimental studies on the active suppression of nonlinear panel flutter by using piezoceramic patch have been carried out. However, these active control methods have a few important problems; a large amount of power is required to operate actuators, and additional apparatuses such as sensor systems and controller are needed. In this study passive suppression schemes for nonlinear flutter of composite panel, which is believed to be more robust suppression system than active control in practical operation, are proposed by using piezoelectric inductor-resistor series shunt circuit. Toward the end, a finite element equation of motion for an electromechanically coupled system is proposed using the Hamilton's principle. To achieve the best damping effect, optimal shape and location of the piezoceramic(PZT) patches are determined by using genetic algorithms. The results clearly demonstrate that the passive damping scheme by using piezoelectric shunt circuit can effectively attenuate the flutter.

  • PDF

Structural health monitoring through nonlinear frequency-based approaches for conservative vibratory systems

  • Bayat, M.;Pakar, I.;Ahmadi, H.R.;Cao, M.;Alavi, A.H.
    • Structural Engineering and Mechanics
    • /
    • 제73권3호
    • /
    • pp.331-337
    • /
    • 2020
  • This paper proposes a new approximate analytical solution for highly nonlinear vibration of mechanical systems called Hamiltonian Approach (HA) that can be widely use for structural health monitoring systems. The complete procedure of the HA approach is studied, and the precise application of the presented approach is surveyed by two familiar nonlinear partial differential problems. The nonlinear frequency of the considered systems is obtained. The results of the HA are verified with the numerical solution using Runge-Kutta's [RK] algorithm. It is established the only one iteration of the HA leads us to the high accurateness of the solution.

Nonlinear resonance of axially moving GPLRMF plates with different boundary conditions

  • Jin-Peng Song;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • 제86권3호
    • /
    • pp.361-371
    • /
    • 2023
  • Boundary condition is an important factor affecting the vibration characteristics of structures, under different boundary conditions, structures will exhibit different vibration behaviors. On the basis of the previous work, this paper extends to the nonlinear resonance behavior of axially moving graphene platelets reinforced metal foams (GPLRMF) plates with geometric imperfection under different boundary conditions. Based on nonlinear Kirchhoff plate theory, the motion equations are derived. Considering three boundary conditions, including four edges simply supported (SSSS), four edges clamped (CCCC), clamped-clamped-simply-simply (CCSS), the nonlinear ordinary differential equation system is obtained by Galerkin method, and then the equation system is solved to obtain the nonlinear ordinary differential control equation which only including transverse displacement. Subsequently, the resonance response of GPLRMF plates is obtained by perturbation method. Finally, the effects of different boundary conditions, material properties (including the GPLs patterns, foams distribution, porosity coefficient and GPLs weight fraction), geometric imperfection, and axial velocity on the resonance of GPLRMF plates are investigated.

유체운동에 의한 불규칙 가진을 받는 비선형계의 확률제어 (A Stochastic Control for Nonlinear Systems under Random Disturbance Based on a Fluid Motion)

  • 오수영;김용관;조경래;최영섭;허훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.892-896
    • /
    • 2001
  • 백색잡음 불규칙 과정으로 모델링된 난류형태의 유체운동에 의하여 가진되는 비선형 시스템의 특성과 제어기법에 대해 연구하였다. 고려된 물리적인 모델은 주질량과 끝단 집중질량을 갖는 보형태의 구조물이다. 그 지배방정식은 확률론적 관점에서 F-P-K 접근법으로 유도되었고, 비선형 해석법으로 Gaussian Closure방법을 이용하였다. 비선형 시스템의 제어기법으로는 슬라이딩 모드 제어기를 최초로 확률영역에서 설계하고 그 효과를 확률영역 및 시간영역에서 고찰하였다.

  • PDF

능동 현가계의 합성 제어에 관한 연구 (A Study of Hybrid Control of Active Suspension System)

  • 김효준;박혁성;양현석;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.345-350
    • /
    • 1996
  • The suspension system plays an important role in vehicle performance. To improve suspension characteristics related to riding comfort and handling stability simultaneously, active suspension system is developed. In this study, a hybrid control scheme is proposed, the idea of which is that the sliding mode control is applied to nonlinear hydraulic system and the skyhook control is applied for controlling the motion of the suspension system. The performance of the proposed control method is evaluated by simulation and experiment of a half car active suspension system.

  • PDF