• Title/Summary/Keyword: nonlinear time history analyses

Search Result 213, Processing Time 0.024 seconds

Ductility Demand for Short-period Structures Excited by Ground Accelerations Similar to Gyeong-ju Earthquakes (경주지진과 유사한 특성을 가지는 지반가속도로 가진된 단주기 구조물 변위연성도 평가)

  • Roh, Ji Eun;Lee, Sang Hyun;Seo, Jun Won;Kim, Dong Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.495-502
    • /
    • 2016
  • In this paper, time and frequency domain characteristics of Gyeong-ju earthquakes were investigated, and nonlinear time history analyses were conducted for bi-linear hysteretic structures excited by short-duration ground accelerations. Previous studies showed that larger inelastic displacements than the peak displacement of the corresponding elastic system were observed especially for the structures with structural period shorter than 0.3s, and the similar results could be obtained when long-duration ground accelerations were used as excitation loads. For the short-duration earthquakes, however, the inelastic displacements were not so large and almost identical to the peak elastic displacements.

Impact Analysis Modeling Development for CANFLEX Fuel Bundle

  • H.Y. Kang;H.C. Suk;Lee, J.H.;Kim, T.H.;J.H. Ku;J.S. Jun;C.H. Chung;Park, J.H.;K.S. Sim
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.15-20
    • /
    • 1996
  • The nonlinear dynamic analyses were performed by newly developing an appropriate impact modelling for the evaluation of the CANFLEX fuel bundle structural integrity during the refuelling period. The initial load under the refuelling condition is considered as initial velocity at impact incident, and the impact of one bundle contacted another bundle for at short time is studied by performing several dynamic analysis method. The impact analysis shows to predict an appropriate velocity and acceleration profile according to load time history for two bundles impact.

  • PDF

Seismic response assessment of high-strength concrete frames strengthened with carbon fiber reinforced polymers

  • Rahmdel, Javad Mokari;Vahid-Vahdattalab, Farzin;Shafei, Erfan;Zirakian, Tadeh
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.735-744
    • /
    • 2021
  • In recent years, the use of new materials and technologies with the aim of developing high-performing and cost-effective structures has greatly increased. Application of high-strength concrete (HSC) has been found effective in reducing the dimensions of frame members; nonetheless, such reduction in dimensions of structural elements in the most cases may result in the lack of accountability in the tolerable drift capacity. On this basis, strengthening of frame members using fiber reinforced polymers (FRPs) may be deemed as an appropriate remedy to address this issue, which albeit requires comprehensive and systematic investigations. In this paper, the performance of properly-designed, two-dimensional frames made of high-strength concrete and strengthened with Carbon Fiber Reinforced Polymers (CFRPs) is investigated through detailed numerical simulation. To this end, nonlinear dynamic time history analyses have been performed using the Seismosoft software through application of five scaled earthquake ground motion records. Unstrengthened (bare) and strengthened frames have been analyzed under seismic loading for performance assessment and comparison purposes. The results and findings of this study show that use of CFRP can be quite effective in seismic response improvement of high-strength-concrete structures.

Equivalent SDF Systems Representing Steel Moment Resisting Frames (철골 모멘트 골조의 지진해석을 위한 등가 단자유도시스템)

  • Han, Sang-Whan;Moon, Ki-Hoon;Kim, Jin-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.21-28
    • /
    • 2008
  • To evaluate the seismic performance of multi-degree of freedom(MDF) systems, repeated nonlinear response history analyses are often conducted, which require extensive computational efforts. To reduce the amount of computation required, equivalent single degree of freedom(SDF) systems representing complex multi-degree of freedom(MDF) systems have been developed. For the equivalent SDF systems, bilinear models and trilinear models have been most commonly used. In these models, the P-$\Delta$ effect due to gravity loads during earthquakes can be accounted for by assigning negative stiffness after elastic range. This study evaluates the adequacy of equivalent SDF systems having these hysteretic models to predict the actual response of steel moment resisting frames(SMRF). For this purpose, this study conducts cyclic pushover analysis, nonlinear time history analysis and incremental dynamic analysis(IDA) for SAC-Los Angeles 9-story buildings using nonlinear MDF models(exact) and equivalent SDF models(approximate). In addition, this study considers the strength limited model.

Comparison of seismic progressive collapse distribution in low and mid rise RC buildings due to corner and edge columns removal

  • Karimiyan, Somayyeh
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.649-665
    • /
    • 2020
  • One of the most important issues in structural systems is evaluation of the margin of safety in low and mid-rise buildings against the progressive collapse mechanism due to the earthquake loads. In this paper, modeling of collapse propagation in structural elements of RC frame buildings is evaluated by tracing down the collapse points in beam and column structural elements, one after another, under earthquake loads and the influence of column removal is investigated on how the collapse expansion in beam and column structural members. For this reason, progressive collapse phenomenon is studied in 3-story and 5-story intermediate moment resisting frame buildings due to the corner and edge column removal in presence of the earthquake loads. In this way, distribution and propagation of the collapse in progressive collapse mechanism is studied, from the first element of the structure to the collapse of a large part of the building with investigating and comparing the results of nonlinear time history analyses (NLTHA) in presence of two-component accelograms proposed by FEMA_P695. Evaluation of the results, including the statistical survey of the number and sequence of the collapsed points in process of the collapse distribution in structural system, show that the progressive collapse distribution are special and similar in low-rise and mid-rise RC buildings due to the simultaneous effects of the column removal and the earthquake loads and various patterns of the progressive collapse distribution are proposed and presented to predict the collapse propagation in structural elements of similar buildings. So, the results of collapse distribution patterns and comparing the values of collapse can be utilized to provide practical methods in codes and guidelines to enhance the structural resistance against the progressive collapse mechanism and eventually, the value of damage can be controlled and minimized in similar buildings.

Comparison of seismic progressive collapse distribution in low and mid rise RC buildings due to corner and edge columns removal

  • Karimiyan, Somayyeh
    • Earthquakes and Structures
    • /
    • v.18 no.6
    • /
    • pp.691-707
    • /
    • 2020
  • One of the most important issues in structural systems is evaluation of the margin of safety in low and mid-rise buildings against the progressive collapse mechanism due to the earthquake loads. In this paper, modeling of collapse propagation in structural elements of RC frame buildings is evaluated by tracing down the collapse points in beam and column structural elements, one after another, under earthquake loads and the influence of column removal is investigated on how the collapse expansion in beam and column structural members. For this reason, progressive collapse phenomenon is studied in 3-story and 5-story intermediate moment resisting frame buildings due to the corner and edge column removal in presence of the earthquake loads. In this way, distribution and propagation of the collapse in progressive collapse mechanism is studied, from the first element of the structure to the collapse of a large part of the building with investigating and comparing the results of nonlinear time history analyses (NLTHA) in presence of two-component accelograms proposed by FEMA_P695. Evaluation of the results, including the statistical survey of the number and sequence of the collapsed points in process of the collapse distribution in structural system, show that the progressive collapse distribution are special and similar in low-rise and mid-rise RC buildings due to the simultaneous effects of the column removal and the earthquake loads and various patterns of the progressive collapse distribution are proposed and presented to predict the collapse propagation in structural elements of similar buildings. So, the results of collapse distribution patterns and comparing the values of collapse can be utilized to provide practical methods in codes and guidelines to enhance the structural resistance against the progressive collapse mechanism and eventually, the value of damage can be controlled and minimized in similar buildings.

Seismic collapse risk of RC frames with irregular distributed masonry infills

  • Li, Yan-Wen;Yam, Michael C.H.;Cao, Ke
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.421-433
    • /
    • 2020
  • Masonry infills are normally considered as non-structural elements in design practice, therefore, the interaction between the bounding frame and the strength contribution of masonry infills is commonly ignored in the seismic analysis work of the RC frames. However, a number of typical RC frames with irregular distributed masonry infills have suffered from undesirable weak-story failure in major earthquakes, which indicates that ignoring the influence of masonry infills may cause great seismic collapse risk of RC frames. This paper presented the investigation on the risk of seismic collapse of RC frames with irregularly distributed masonry infills through a large number of nonlinear time history analyses (NTHAs). Based on the results of NTHAs, seismic fragility curves were developed for RC frames with various distribution patterns of masonry infills. It was found that the existence of masonry infills generally reduces the collapse risk of the RC frames under both frequent happened and very strong earthquakes, however, the severe irregular distribution of masonry infills, such as open ground story scenario, results in great risk of forming a weak story failure. The strong-column weak-beam (SCWB) ratio has been widely adopted in major seismic design codes to control the potential of weak story failures, where a SCWB ratio value about 1.2 is generally accepted as the lower limit. In this study, the effect of SCWB ratio on inter-story drift distribution was also parametrically investigated. It showed that improving the SCWB ratio of the RC frames with irregularly distributed masonry infills can reduce inter-story drift concentration index under earthquakes, therefore, prevent weak story failures. To achieve the same drift concentration index limit of the bare RC frame with SCWB ratio of about 1.2, which is specified in ACI318-14, the SCWB ratio of masonry-infilled RC frames should be no less than 1.5. For the open ground story scenario, this value can be as high as 1.8.

Performance Analysis of Friction Pendulum System using PVDF/MgO Friction Material (PVDF/MgO 마찰재를 이용한 마찰면진장치의 성능 분석)

  • Kim, Sung-Jo;Kim, Ji-Su;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.213-219
    • /
    • 2021
  • Polytetrafluoroethylene (PTFE) is a commercialized friction material in friction pendulum systems used for earthquake hazard mitigation in structures, and it has excellent chemical resistance and frictional performance. However, PTFE has a relatively low wear resistance for the friction pendulum systems in service. As an alternative to PTFE, a cost-effective frictional material, polyvinylidene fluoride (PVDF) strengthened by magnesium oxide (MgO), with enhanced wear resistance performance is proposed in this study. The frictional performance of the developed PVDF/MgO was evaluated through experiments and compared with that of PTFE. Accordingly, a friction pendulum system was designed using the measured friction coefficient. The performance of this friction pendulum system was evaluated via nonlinear time history analyses of bridges. Subsequently, the plausibility of using PVDF/MgO as an alternative to PTFE as a friction material for friction pendulum systems was discussed.

Optimal design of nonlinear seismic isolation system by a multi-objective optimization technique integrated with a stochastic linearization method (추계학적 선형화 기법을 접목한 다목적 최적화기법에 의한 비선형 지진격리시스템의 최적설계)

  • Kwag, Shin-Young;Ok, Seung-Yong;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.1-13
    • /
    • 2010
  • This paper proposes an optimal design method for the nonlinear seismic isolated bridge. The probabilities of failure at the pier and the seismic isolator are considered as objective functions for optimal design, and a multi-objective optimization technique is employed to efficiently explore a set of multiple solutions optimizing mutually-conflicting objective functions at the same time. In addition, a stochastic linearization method is incorporated into the multi-objective optimization framework in order to effectively estimate the stochastic responses of the bridge without performing numerous nonlinear time history analyses during the optimization process. As a numerical example to demonstrate the efficiency of the proposed method, the Nam-Han river bridge is taken into account, and the proposed method and the existing life-cycle-cost based design method are both applied for the purpose of comparing their seismic performances. The comparative results demonstrate that the proposed method not only shows better seismic performance but also is more economical than the existing cost-based design method. The proposed method is also proven to guarantee improved performance under variations in seismic intensity, in bandwidth and in the predominant frequency of the seismic event.

Seismic Performance of a Knee-Braced Moment Resisting Frame (Knee brace가 설치된 모멘트저항골조의 내진성능)

  • Choi, Hyun-Hoon;Kim, Jin-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.171-180
    • /
    • 2005
  • In this study the seismic performance of a three-story knee-braced moment-resisting frame (KBMRF), which is typically employed to support pipelines for oil or gas, was investigated. Nonlinear static pushover analyses were performed first to observe the force-displacement relationship of KBMRF under increasing seismic load. The results show that, when the maximum inter-story drift reached 1.5% of the story height, the main structural members, such as beams and columns, still remained elastic. Then nonlinear dynamic time-history analyses were carried out using eight earthquake ground motion time-histories scaled to at the design spectrum of UBC-97. It turned out that the maximum inter-story drift was smaller than the drift limit of 1.5 % of the structure height, and that the columns remained elastic. Based on these analytical results, it can be concluded that the seismic performance of the structure satisfies all the requirements regulated in the seismic code.