• Title/Summary/Keyword: nonlinear test model

Search Result 903, Processing Time 0.03 seconds

Impact Analysis of a Pedestrian Lower Legform Model (보행자 다리 하체 모형의 차량 충돌해석)

  • Kim, Jin-Gon;Park, Yong-Kuk;Kim, Jung-Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.2
    • /
    • pp.52-56
    • /
    • 2012
  • Recently, the pedestrian protection regulations of Europe and Japan are becoming more stringent. However, it is difficult to evaluate the performance of protection because each regulation has different test conditions such as dummy, impact speed and so on. In this study, we construct a finite element model of pedestrian lower legform impactor prescribed in EEVC (European Experimental Vehicle Committee) W/G 10, and performed a impact analysis between the impactor and the front end module of vehicle. The simulations are carried out by using LS-DYNA3D, which is a well-known nonlinear dynamic simulation software. The analysis results according to various impact location show the impact characteristics of the lower legform.

A new damage index for seismic fragility analysis of reinforced concrete columns

  • Kang, Jun Won;Lee, Jeeho
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.875-890
    • /
    • 2016
  • A new structural damage index for seismic fragility analysis of reinforced concrete columns is developed based on a local tensile damage variable of the Lee and Fenves plastic-damage model. The proposed damage index is formulated from the nonlinear regression of experimental column test data. In contrast to the response-based damage index, the proposed damage index is well-defined in the form of a single monotonically-increasing function of the volume weighted average of local damage distribution, and provides the necessary computability and objectivity. It is shown that the present damage index can be appropriately zoned to be used in seismic fragility analysis. An application example in the computational seismic fragility evaluation of reinforced concrete columns validates the effectiveness of the proposed damage index.

TRANSONIC AEROELASTIC ANALYSIS OF LEARJET AIRCRAFT WING MODEL (리어제트 항공기 날개의 천음속 공탄성해석)

  • Tran, T.T.;Kim, D.H.;Kim, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.453-457
    • /
    • 2011
  • In this study, transonic aeroelastic response analyses haw been conducted for the business jet aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

  • PDF

Sequencing for a mixed model assembly line in just-in-time production system (JIT 상황하에서 다품종 조립라인 작업물 투입 순서 결정 방안)

  • Hwang, Hark;Jeong, In-Jae;Lim, Joon-Mook
    • Korean Management Science Review
    • /
    • v.11 no.1
    • /
    • pp.91-106
    • /
    • 1994
  • In mixed model assembly lines, products are assembled seqeuntially that have different combination of options specified by customers. In just in time (JIT) environment, production smoothing becomes an important issue for sub-lines which supply the necessary parts to each workstation of the assembly line. Another important issue is to avoid line stopping caused by work overload in workstations. To find a sequence which minimizes the costs associated with line stoppage and the option parts inventory level, a nonlinear mixed integer programming is formulated. Recognizing the limit of the Branch and Bound technique in large sized problems, a heuristic solution procedure is proposed. The performance of the heuristic is compared with the Branch and Bound technique through randomly generated test problems. The computational results indicate that on the average the heuristic solutions deviate approximately 3.6% from the optimal solutions.

  • PDF

Transonic Aeroelastic Analysis of Business Jet Aircraft Wing Model (비즈니스 제트 항공기 날개의 천음속 공탄성 해석)

  • Kim, Yo-Han;Kim, Dong-Hyun;Tran, Thanh-Toan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.299-299
    • /
    • 2011
  • In this study, transonic aeroelastic response analyses have been conducted for the business jet aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

  • PDF

An Empirical Study on Faults Prediction for Large Scale Telecommunication Software (대규모 통신 소프트웨어의 결함 수 예측에 관한 사례 연구)

  • Park, Young-Sik;Yoon, Byeong-Nam;Lim, Jae-Hak
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.2
    • /
    • pp.263-276
    • /
    • 1999
  • In this paper, we consider the change request data collected from the system test of a large-scale telecommunication software and analyze the types and causes of failures. And we develop statistical models that incorporate a functional relation between the faults and some software metrics. To this end, we consider three possible regression models including a stepwise regression model and two nonlinear models. Three developed models are evaluated with respect to the predictive quality. We also discuss the advantage of proposed models and the application of our model to a new project.

  • PDF

Placement and Operation Planning of DG System considering Load Modeling in Unbalanced Distribution Systems (불평형배전계통에서 부하모형을 고려한 분산형전원의 설치 및 운영계획)

  • Kim, Kyu-Ho;Lee, Yu-Jeong;Rhee, Sang-Bong;Lee, Sang-Keun;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.396-398
    • /
    • 2003
  • This paper presents the scheme for load model based dispersed generation system (DGs) installation and operation in unbalanced distribution systems. Groups of each individual load model consist of residential, industrial, commercial, official and agricultural load. The main idea of solving fuzzy nonlinear goal programming is to transform the original objective function and constraints into the equivalent multiple objective functions with fuzzy sets to evaluate their imprecise nature for the criterion of power loss minimization, the number or total capacity of DGs and the bus voltage deviation, and then solve the problem using genetic algorithms. The method proposed was applied to IEEE 13 bus test systems to demonstrate its effectiveness.

  • PDF

Simulation and Experiment of Elastomer Seal for Pneumatic Servo Cylinder

  • Hur, Shin;Song, Kyung Jun;Woo, Chang Su
    • Elastomers and Composites
    • /
    • v.50 no.4
    • /
    • pp.251-257
    • /
    • 2015
  • The rubber seal is a part inserted into servo cylinder to keep the air pressure constant. In order for efficient movements of the servo cylinder, the frictional coefficient of the rubber seal needs to be minimized while the sealing is maintained. In this work the friction characteristics of rubber seal specimen are tested on metal plate at various conditions. The experimental conditions include roughness level, applied pressure, lubrication, and rubbing speed. The design of experiment approach is taken to assess the effect of each parameter. The nonlinear frictional response of the rubber is applied to the FEM model simulating the servo cylinder movement. The result demonstrates that precise optimization of the servo cylinder movement must be preceded by preliminary experiments coupled with the theory and FEM model.

Development of the Analytical Model for the Fixed End Stub-Girder System (양단 고정된 스터브 거더 시스템의 해석 모델 개발)

  • 백종성;이승창;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.61-70
    • /
    • 1997
  • This paper presents several modeling methods to analyze the stub-girder system, testifies those methods base on actual test results for the behavior of the simply supported stub-girder system, and finally, by changing the boundary conditions in those models, predicts the behavior of the fixed end stub-girder system. Two different methods are used for the structural modeling. In the first method, the stub-girder is modeled as a vierendeel truss girder, and in the second method, as a finite element model. Both methods use the finite element analysis software package LUSAS™ for linearly elastic analyses and nonlinear analyses.

  • PDF

Development of Serviceability Model for RC Flexural Members (철근콘크리트 휨부재의 사용성 모델 개발)

  • Lee, Ki-Yeol;Kim, Jang-Hyun;Ha, Tae-Gwan;Kim, Dae-Joong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.413-416
    • /
    • 2004
  • This paper describes a proposal for crack width and deflection in RC flexural members. Because the serviceability provisions of the current codes are mainly based on only empirical relationships developed from test result and effective moment of inertia, crack width and deflections are contrary to the actual values. Based on nonlinear bond characteristics, tension stiffening effect, arch action and effective concrete tensile area. Then an equation is developed for predicting crack width and deflection in flexural members. The predicted results shows that as proposed model employed, crack width and deflections are different from estimated by the current KCI, MC 90 and EC 2 provisons, and the values predicted are in good agreement with experimentally measured values.

  • PDF