• Title/Summary/Keyword: nonlinear test model

Search Result 903, Processing Time 0.029 seconds

Numerical and experimental analysis of hydroelastic responses of a high-speed trimaran in oblique irregular waves

  • Chen, Zhanyang;Gui, Hongbin;Dong, Pingsha;Yu, Changli
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.409-421
    • /
    • 2019
  • Investigation of hydroelastic responses of high-speed vessels in irregular sea state is of major interest in naval applications. A three dimensional nonlinear time-domain hydroelastic method in oblique irregular waves is developed, in which the nonlinear hydrostatic restoring force caused by instantaneous wetted surface and slamming force are considered. In order to solve the two technical problems caused by irregular sea state, the time-domain retardation function and Proportional, Integral and Derivative (PID) autopilot model are applied respectively. Besides, segmented model tests of a high-speed trimaran in oblique waves are performed. An oblique wave testing system for trimarans is designed and assembled. The measured results of main hull and cross-decks are analyzed, and the differences in distribution of load responses between trimarans and monohull ships are discussed. Finally, from the comparisons, it is confirmed that the present concept for dealing with nonlinear hydroelastic responses of ships in oblique irregular waves is reliable and accurate.

Seismic Performance Evaluation of Masonry Infilled Wall With Non-seismic Detail (비내진 상세를 가진 조적채움벽의 내진성능평가)

  • Park, Byung Tae;Kwon, Ki Hyuk
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.66-74
    • /
    • 2017
  • Masonry walls which are commonly used for partitions in low-rise reinforced concrete (RC) structures, can be easily exposed to high risks under strong earthquakes. Since the strength degradations cannot be protected under the ground motions, their applications cannot be recommended for building structures which are designed to possess high seismic performances. However, masonry-infilled walls are typically considered as non-structural elements in evaluating the seismic performance of building structures. In order to figure out this problem, this study performed experiments using two specimens-only RC frame and RC frame infilled with masonry walls- under static loading. Also, the study established analytical models representing fully infilled frames and bare frame, and compared their structural behavior with test results. In addition, analytical model representing partially infilled frames was established and analyzed. Test results indicated that strength and energy dissipating capacity were increased for IW-RN(fully infilled frames) compared to the NW(bare frame). The nonlinear static analysis of the three specimens was also conducted using the inelastic plastic hinge frame element and diagonal strut models, and the analytical results successfully simulated the nonlinear behaviour of the specimens in accordance with the test results.

A Numerical Study on the Thermo-mechanical Response of a Composite Beam Exposed to Fire

  • Pak, Hongrak;Kang, Moon Soo;Kang, Jun Won;Kee, Seong-Hoon;Choi, Byong-Jeong
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1177-1190
    • /
    • 2018
  • This study presents an analytical framework for estimating the thermo-mechanical behavior of a composite beam exposed to fire. The framework involves: a fire simulation from which the evolution of temperature on the structure surface is obtained; data transfer by an interface model, whereby the surface temperature is assigned to the finite element model of the structure for thermo-mechanical analysis; and nonlinear thermo-mechanical analysis for predicting the structural response under high temperatures. We use a plastic-damage model for calculating the response of concrete slabs, and propose a method to determine the stiffness degradation parameter of the plastic-damage model by a nonlinear regression of concrete cylinder test data. To validate simulation results, structural fire experiments have been performed on a real-scale steel-concrete composite beam using the fire load prescribed by ASTM E119 standard fire curve. The calculated evolution of deflection at the center of the beam shows good agreement with experimental results. The local test results as well as the effective plastic strain distribution and section rotation of the composite beam at elevated temperatures are also investigated.

Stability Analysis of Very Soft Soils Using Geotextiles: The Role of Model Test and Finite Element Analysis (토목섬유로 보강한 연약지반의 안정도 해석: 모형실험과 유한요소해석)

  • 고홍석;고남영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.39-53
    • /
    • 1994
  • To investigate the behaviour of the embankment on very soft foundation reinforced geotex- files,the laboratory model test in order to analyze the elementary effects of geotextile reinfor- cement and the finite element program analyzing the stresses and deformations characteristics was carried out. A two-dimensional nonlinear finite element program called GEOTEXT(a modification of ISBILD) for the static analysis of embankment on very soft foundation reinforced geotextiles has been developed. Both linear and nonlinear hyperbolic stress-strain soil models are inclu- ded, and incremental and stage construction can be simulated. However, the program GEO- TEXT is not developed herein as an adaptable design tool for practicing engineer. It was found that the geotextile reinforcement significantly reduced the shear stresses in the foundation and decreased the vertical differential settlements at the top of the embank- ment. This influence was more pronounced as the tensile strength of the geotextile was increased.

  • PDF

Hydrologic Modeling Approach using Time-Lag Recurrent Neural Networks Model (시간지체 순환신경망모형을 이용한 수문학적 모형화기법)

  • Kim, Seong-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1439-1442
    • /
    • 2010
  • Time-lag recurrent neural networks model (Time-Lag RNNM) is used to estimate daily pan evaporation (PE) using limited climatic variables such as max temperature ($T_{max}$), min temperature ($T_{min}$), mean wind speed ($W_{mean}$) and mean relative humidity ($RH_{mean}$). And, for the performances of Time-Lag RNNM, it is composed of training and test performances, respectively. The training and test performances are carried out using daily time series data, respectively. From this research, we evaluate the impact of Time-Lag RNNM for the modeling of the nonlinear time series data. We should, thus, construct the credible data of the daily PE using Time-Lag RNNM, and can suggest the methodology for the irrigation and drainage networks system. Furthermore, this research represents that the strong nonlinear relationship such as pan evaporation modeling can be generalized using Time-Lag RNNM.

  • PDF

Virtual maneuvering test in CFD media in presence of free surface

  • Hajivand, Ahmad;Mousavizadegan, S. Hossein
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.540-558
    • /
    • 2015
  • Maneuvering oblique towing test is simulated in a Computational Fluid Dynamic (CFD) environment to obtain the linear and nonlinear velocity dependent damping coefficients for a DTMB 5512 model ship. The simulations are carried out in freely accessible OpenFOAM library with three different solvers, rasInterFoam, LTSInterFoam and interDyMFoam, and two turbulence models, $k-{\varepsilon}$ and SST $k-{\omega}$ in presence of free surface. Turning and zig-zag maneuvers are simulated for the DTMB 5512 model ship using the calculated damping coefficients with CFD. The comparison of simulated results with the available experimental shows a very good agreement among them.

Torsional Analysis of RC Beam Considering Tensile Stiffening of Concrete (콘크리트의 인장강성을 고려한 RC보의 비틀림 해석)

  • 박창규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.167-172
    • /
    • 2002
  • Nonlinear analysis of the reinforced concrete beam subjected to torsion is presented. Seventeen equations involving seventeen variables are derived from the equilibrium equation, compatibility equation, and the material constitutive laws to solve the torsion problem. Newton method was used to solve the nonlinear simultaneous equations and efficient algorithms are proposed. Present model covers the behavior of reinforced concrete beam under pure torsion from service load range to ultimate stage. Tensile resistance of concrete after cracking is appropriately considered. The softened concrete truss model and the average stress-strain relations of concrete and steel are used. To verify the validity of Present model, the nominal torsional moment strengths according to ACI-99 code and the ultimate torsional moment by present model are compared to experimental torsional strengths of 55 test specimens found in literature. The ultimate torsional moment strengths by the present model show good results.

  • PDF

SIMULATION OF STARTING PROCESS OF DIESEL ENGINE UNDER COLD CONDITIONS

  • Park, J.K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.289-298
    • /
    • 2007
  • A nonlinear dynamic simulation model from cranking to idle speed is developed to optimize the cold start process of a diesel engine. Physically-based first order nonlinear differential equations and some algebraic equations describing engine dynamics and starter motor dynamics are used to model the performance of cold starting process which is very complex and involves many components including the cold start aiding method. These equations are solved using numerical schemes to describe the starting process of a diesel engine and to study the effects of cold starting parameters. The validity of this model is examined by a cold start test at $-20^{\circ}C$. Using the developed model the effects of the important starting variables on the cold starting processes were investigated. This model can be served as a tool for designing computer aided control systems that improve cold start performance.

Recipe Prediction of Colorant Proportion for Target Color Reproduction (목표색상 재현을 위한 페인트 안료 배합비율의 예측)

  • Hwang, Kyu-Suk;Park, Chang-Won
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.438-445
    • /
    • 2008
  • For recipe prediction of colorant proportion showing nonlinear behavior, we modeled the effects of colorant proportion of basic colors on the target colors and predicted colorant proportion necessary for making target colors. First, colorant proportion of basic colors and color information indicated by the instrument was applied by a linear model and a multi-layer perceptrons model with back-propagation learning method. However, satisfactory results were not obtained because of nonlinear property of colors. Thus, in this study the neuro-fuzzy model with merit of artificial neural networks and fuzzy systems was presented. The proposed model was trained with test data and colorant proportion was predicted. The effectiveness of the proposed model was verified by evaluation of color difference(${\Delta}E$).

Torsional Analysis of RC Beam Using Average Strains (평균변형률을 이용한 RC보의 비틀림 해석)

  • Park, Chang-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.157-165
    • /
    • 2002
  • Nonlinear analysis of the reinforced concrete beam subjected to torsion is presented. Seventeen equations involving seventeen variables are derived from the equilibrium equation, compatibility equation, and the material constitutive laws to solve the torsion problem. Newton method was used to solve the nonlinear simultaneous equations and efficient algorithms are proposed. Present model covers the behavior of reinforced concrete beam under pure torsion from service load range to ultimate stage. Tensile resistance of concrete after cracking is appropriately considered. The softened concrete truss model and the average stress-strain relations of concrete and steel are used. To verify the validity of present model, the nominal torsional moment strengths according to ACI-99 code and the ultimate torsional moment by present model are compared to experimental torsional strengths of 55 test specimens found in literature. The ultimate torsional moment strengths by the present model show good results.