• Title/Summary/Keyword: nonlinear static methods

Search Result 136, Processing Time 0.024 seconds

The Study of Reinforcement through the Nonlinear Static Analysis and Inelastic Seismic Performance Evaluation in School Building (학교건물에 있어서 비탄성해석 및 비선형 정적해석을 통한 내진성능 평가에 따른 보강 연구)

  • Lee, Ho;Kwon, Young-Wook;Kim, Hong-Do
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.55-63
    • /
    • 2012
  • This study is about earthquake-proof reinforcement through structural function evaluation of an school building. The purpose of this study is to comparatively analyze structure reinforcement measures in consideration of safety and usability through structural function evaluation of school buididng, to offer rational measures for earthquake-proof function and to provide help in maintaining safe structures against earthquake. For this purpose, was selected for this study as an existing school building, earthquake-proof function evaluation was conducted, and measures to reinforce earthquake-proof function was offered. As for the research method, the first and the second earthquake-proof function evaluations were conducted which is an existing reinforced concrete school building. Through the abovementioned methods, earthquake-proof function evaluation were conducted, the results were analyzed and the measure to reinforce earthquake-proof function were offered(Steel damper, Carbon plate stiffeners). The offered measure to reinforce earthquake-proof function was applied to the subject structure, and comprehensive results were derived from earthquake-proof function evaluation regarding before and after earthquake-proof function reinforcement.

Stability analysis of steel cable-stayed bridges

  • Tang, Chia-Chih;Shu, Hung-Shan;Wang, Yang-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.11 no.1
    • /
    • pp.35-48
    • /
    • 2001
  • The objective of this study is to investigate the stability behavior of steel cable-stayed bridges by comparing the buckling loads obtained by means of finite element methods with eigen-solver. In recent days, cable-stayed bridges dramatically attract engineers' attention due to their structural characteristics and aesthetics. They require a number of design parameters and present a high degree of static indetermination, especially for long span bridges. Cable-stayed bridges exhibit several nonlinear behaviors concurrently under normal design loads due to the individual nonlinearity of substructures such as the pylons, stay cables, and bridge deck, and their interactions. The geometric nonlinearities arise mainly from large displacements of cables. Strong axial and lateral forces acting on the bridge deck and pylons cause structural nonlinear behaviors. The interaction is among the substructures. In this paper, a typical three-span steel cable-stayed bridge with a variety of design parameters has been investigated. The numerical results indicate that the design parameters such as the ratio of $L_1/L$ and $I_p/I_b$ are important for the structural behavior, where $L_1$ is the main span length, L is the total span length of the bridge, $I_p$ is the moment of inertia of the pylon, and $I_b$ is the moment of inertia of the bridge deck. When the ratio $I_p/I_b$ increases, the critical load decreases due to the lack of interaction among substructures. Cable arrangements and the height of pylon are another important factors for this type of bridge in buckling analysis. According to numerical results, the bridges supported by a pylon with harp-type cable arrangement have higher critical loads than the bridges supported by a pylon with fan-type cable arrangement. On contrary, the shape of the pylon does not significantly affect the critical load of this type of bridge. All numerical results have been non-dimensionalized and presented in both tabular and graphical forms.

Evaluation of Capacity Spectrum Methods for Seismic Fragility Analysis of Bridges (교량의 지진 취약도 해석 시 사용되는 성능 스펙트럼 기법의 평가)

  • Kim, Sang-Hoon;Yi, Jin-Hak;Kim, Ho-Kyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.67-76
    • /
    • 2004
  • This study presents the evaluation of CSM(Capacity Spectrum Method, ATC-40) in developing fragility curves for a sample concrete bridge. The CSM is originally developed as one of the simplified procedures for building structures, while this study adopts the CSM to develop fragility curves of bridge structures. Four(4) different approaches are demonstrated and the fragility curves developed are compared those by the nonlinear time history analysis. Fragility curves in this study are represented by lognormal distribution functions with two parameters and developed as a function of PGA. The sixty(60) ground acceleration time histories for the Los Angeles area developed for the Federal Emergency Management Agency (FEMA) SAC(SEAOC-ATC-CUREe) steel project are used for the bridge analysis. The comparison of fragility curves by the CSM with those by the time history analysis indicates that the agreement is excellent for one of the methods investigated in this study. In this respect. it is recommended that the demand spectrum might be improved according to the guidelines suggested in this study. However, this observation might not always apply, depending on the details of specific bridge characteristic

Dynamic Characteristics Analysis of Spherical Shell with Initial Deflection(II) - Effects of Initial Deflection - (초기 처짐을 갖는 Spherical Shell의 동적 특성에 관한 연구(II) - 초기 처짐에 따른 동적 특성 -)

  • Cho, Jin-Goo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.91-99
    • /
    • 1998
  • The widespread use of thin shell structures has created a need for a systematic method of analysis which can adequately account for arbitrary geometric form and boundary conditions as well as arbitrary general type of loading. Therefore, the stress and analysis of thin shell has been one of the more challenging areas of structural mechanics. A wide variety of numerical methods have been applied to the governing differential equations for spherical and cylindrical structures with a few results applicable to practice. The analysis of axisymmetric spherical shell is almost an every day occurrence in many industrial applications. A reliable and accurate finite element analysis procedure for such structures was needed. Dynamic loading of structures often causes excursions of stresses well into the inelastic range and the influence of geometry changes on the response is also significant in many cases. Therefore both material and geometric nonlinear effects should be considered. In general, the shell structures designed according to quasi-static analysis may fail under conditions of dynamic loading. For a more realistic prediction on the load carrying capacity of these shell, in addition to the dynamic effect, consideration should also include other factors such as nonlinearities in both material and geometry since these factors, in different manner, may also affect the magnitude of this capacity. The objective of this paper is to demonstrate the dynamic characteristics of spherical shell. For these purposes, the spherical shell subjected to uniformly distributed step load was analyzed for its large displacements elasto-viscoplastic static and dynamic response. Geometrically nonlinear behaviour is taken into account using a Total Lagrangian formulation and the material behaviour is assumed to elasto-viscoplastic model highly corresponding to the real behaviour of the material. The results for the dynamic characteristics of spherical shell in the cases under various conditions of base-radius/central height(a/H) and thickness/shell radius(t/R) were summarized as follows : The dynamic characteristics with a/H. 1) AS the a/H increases, the amplitude of displacement in creased. 2) The values of displacement dynamic magnification factor (DMF) were ranges from 2.9 to 6.3 in the crown of shell and the values of factor in the mid-point of shell were ranged from 1.8 to 2.6. 3) As the a/H increases, the values of DMF in the crown of shell is decreased rapidly but the values of DMF in mid-point shell is increased gradually. 4) The values of DMF of hoop-stresses were range from 3.6 to 6.8 in the crown of shell and the values of factor in the mid-point of shell were ranged from 2.3 to 2.6, and the values of DMF of stress were larger than that of displacement. The dynamic characteristics with t/R. 5) With the thickness of shell decreases, the amplitude of the displacement and the period increased. 6) The values of DMF of the displacement were ranged from 2.8 to 3.6 in the crown of shell and the values of factor in the mid-point of shell were ranged from 2.1 to 2.2.

  • PDF

A Study on Brace-height Ratio for Seismic Retrofit of School Building (학교 건축물의 내진 보강을 위한 가새 - 높이비에 관한 연구)

  • Lee, Hwa-Jung;Byon, Dae-Kun;Yoon, Sung-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.10-17
    • /
    • 2020
  • The recent earthquake in Korea caused large and small damages to many school building. School building is an important building that is used as a shelter in the event of disaster. Among the seismic retrofit methods, the internal steel braced frame type method is used for its relatively easy construction and excellent performance. In this study, the maximum shear force and displacement were compared and examined by applying the brace frame to existing concrete school buildings. As a result, we verified the adequacy of the analytical model and compared and examined the effect of brace-height ratio on the span of the existing school buildings. The adequacy of the maximum shear force and displacement relationship can be confirmed in the model with a length of 0.3. In addition, seismic frame was applied to the actual non-seismic reinforced concrete school building, and the seismic performance was evaluated by nonlinear static analysis(Push-over analysis) according to the ratio of brace-height. As a result, the increase of the brace-height according to the brace-height ratio has the effect of increasing the maximum shear force and maximum load at the performance point. But the collapse of the braced frame due to the increase in the lateral stiffness occurred, indicating that seismic retrofit according to the proper brace-height is necessary. Therefore, in the seismic retrofit design of brace frame of existing school building, it is necessary to select the proper brace-height after retrofit analysis according to the brace-height ratio.

Numerical simulation of an external prestressing technique for prestressed concrete end block

  • Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Saibabu, S.;Lakshmanan, N.;Jayaraman, R.;Senthil, R.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.5
    • /
    • pp.605-619
    • /
    • 2009
  • This paper presents the details of finite element (FE) modeling and analysis of an external prestressing technique to strengthen a prestressed concrete (PSC) end block. Various methods of external prestressing techniques have been discussed. In the proposed technique, transfer of external force is in shear mode on the end block creating a complex stress distribution. The proposed technique is useful when the ends of the PSC girders are not accessible. Finite element modeling issues have been outlined. Brief description about material nonlinearity including key aspects in modeling inelastic behaviour has been provided. Finite element (FE) modeling including material, loading has been explained in depth. FE analysis for linear and nonlinear static analysis has been conducted for varying external loadings. Various responses such as out-of-plane deformation and slip have been computed and compared with the corresponding experimental observations. From the study, it has been observed that the computed slope and slip of the steel bracket under external loading is in good agreement with the corresponding experimental observations.

Evaluation of seismic strengthening techniques for non-ductile soft-story RC frame

  • Karki, Prajwol;Oinam, Romanbabu M.;Sahoo, Dipti Ranjan
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.423-435
    • /
    • 2020
  • Open ground story (OGS) reinforced concrete (RC) buildings are vulnerable to the complete collapse or severe damages under seismic actions. This study investigates the effectiveness of four different strengthening techniques representing the local and global modifications to improve the seismic performance of a non-ductile RC OGS frame. Steel caging and concrete jacketing methods of column strengthening are considered as the local modification techniques, whereas steel bracing and RC shear wall systems are selected as the global strengthening techniques in this study. Performance-based plastic design (PBPD) approach relying on energy-balance concept has been adopted to determine the required design force demand on the strengthening elements. Nonlinear static and dynamic analyses are carried out on the numerical models of study frames to assess the effectiveness of selected strengthening techniques in improving the seismic performance of OGS frame.. Strengthening techniques based on steel braces and RC shear wall significantly reduced the peak interstory drift response of the OGS frame. However, the peak floor acceleration of these strengthened frames is amplified by more than 2.5 times as compared to that of unstrengthened frame. Steel caging technique of column strengthening resulted in a reasonable reduction in the peak interstory drift response without substantial amplification in peak floor acceleration of the OSG frame.

Dynamic Response of Triangular Solar Sail with Wrinkles (주름이 있는 삼각형 태양돛의 동적해석)

  • Bae, Hongsu;Woo, Kyeongsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.195-203
    • /
    • 2015
  • In this paper, the dynamic behavior of wrinkled triangular solar sail was studied by finite element analysis. The analysis was proceeded first by performing static wrinkle analysis under tensile corner load on sail membrane, and then performing modal analysis. The membrane element method with wrinkle algorithm and the shell element post-buckling analysis method were used to account for the wrinkle deformation and the results were compared for analysis methods throughly. The comparison was also made to that without wrinkle consideration to investigate the effect of wrinkle deformation on the results. Cases with various loading cable angles were analyzed and the results were systematically examined.

Experimental and analytical assessment of SRF and aramid composites in retrofitting RC columns

  • Dang, Hoang V.;Shin, Myoungsu;Han, Sang Whan;Lee, Kihak
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.797-815
    • /
    • 2014
  • This research aimed to investigate retrofitting methods for damaged RC columns with SRF (Super Reinforced with Flexibility) and aramid composites and their impacts on the seismic responses. In the first stage, two original (undamaged) column specimens, designed to have a flexural- or shear-controlled failure mechanism, were tested under quasi-static lateral cyclic and constant axial loads to failure. Afterwards, the damaged column specimens were retrofitted, utilizing SRF composites and aramid rods for the flexural-controlled specimen and only SRF composites for the shear-controlled specimen. In the second stage, the retrofitted column specimens were tested again under the same conditions as the first stage. The hysteretic responses such as strength, ductility and energy dissipation were discussed and compared to clarify the specific effects of each retrofitting material on the seismic performances. Generally, SRF composites contributed greatly to the ductility of the specimens, especially for the shear-controlled specimen before retrofitting, in which twice the deformation capacity was obtained in the retrofitted specimen. The shear-controlled specimen also experienced a flexural failure mechanism after retrofitting. In addition, aramid rods moderately fortified the specimen in terms of the maximum shear strength. The maximum strength of the aramid-retrofitted specimen was 12% higher than the specimen without aramid rods. In addition, an analytical modeling of the undamaged specimens was conducted using Response-2000 and Zeus Nonlinear in order to further validate the experimental results.

Behaviour of soil-steel composite bridge with various cover depths under seismic excitation

  • Maleska, Tomasz;Beben, Damian
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.747-764
    • /
    • 2022
  • The design codes and calculation methods related to soil-steel composite bridges and culverts only specify the minimum soil cover depth. This value is connected with the bridge span and shell height. In the case of static and dynamic loads (like passing vehicles), such approach seems to be quite reasonable. However, it is important to know how the soil cover depth affects the behaviour of soil-steel composite bridges under seismic excitation. This paper presents the results of a numerical study of soil-steel bridges with different soil cover depths (1.00, 2.00, 2.40, 3.00, 4.00, 5.00, 6.00 and 7.00 m) under seismic excitation. In addition, the same soil cover depths with different boundary conditions of the soil-steel bridge were analysed. The analysed bridge has two closed pipe-arches in its cross section. The load-carrying structure was constructed as two shells assembled from corrugated steel plate sheets, designed with a depth of 0.05 m, pitch of 0.15 m, and plate thickness of 0.003 m. The shell span is 4.40 m, and the shell height is 2.80 m. Numerical analysis was conducted using the DIANA programme based on the finite element method. A nonlinear model with El Centro records and the time history method was used to analyse the problem.