• 제목/요약/키워드: nonlinear sloshing

검색결과 37건 처리시간 0.023초

Simple analytical method for predicting the sloshing motion in a rectangular pool

  • Park, Won Man;Choi, Dae Kyung;Kim, Kyungsoo;Son, Sung Man;Oh, Se Hong;Lee, Kang Hee;Kang, Heung Seok;Choi, Choengryul
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.947-955
    • /
    • 2020
  • Predicting the sloshing motion of a coolant during a seismic assessment of a rectangular spent fuel pool is of critical concern. Linear theory, which provides a simple analytical method, has been used to predict the sloshing motion in rectangular pools and tanks. However, this theory is not suitable for the high-frequency excitation problem. In this study, the authors developed a simple analytical method for predicting the sloshing motion in a rectangular pool for a wide range of excitation frequencies. The correlation among the linear theory parameters, influencing on excitation and convective waves, and the excitation frequency is investigated. Sloshing waves in a rectangular pool with several liquid heights are predicted using the original linear theory, a modified linear theory and computational fluid dynamics analysis. The results demonstrate that the developed method can predict sloshing motion over a wide range of excitation frequencies. However, the developed method has the limitations of linear solutions since it neglects the nonlinear features of sloshing motion. Despite these limitations, the authors believe that the developed method can be useful as a simple analytical method for predicting the sloshing motion in a rectangular pool under various external excitations.

유한 요소법을 이용한 비선형 슬러싱 문제 해석 (Numerical Analysis on Nonlinear Sloshing Problem using Finite Element Method)

  • 경조현;김장환;조석규;배광준
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제7권4호
    • /
    • pp.216-223
    • /
    • 2004
  • 본 논문에서는 3차원 비선형 슬러싱 유동에 대한 수치해법을 개발하였다. 탱크내에서 과도한 슬러싱 유동이 일어나는 경우에는 슬러싱 유동에 의해 유기되는 유체 충격력에 의해 탱크 내부 부재나 탱크 자체의 손상을 야기할 수 있다. 비선형 슬러싱 유동을 포텐셜 유동 이론에 근거한 자유표면파 문제로 정식화하고, 엄밀한 비선형 자유표면 경계조건을 적용하여 수치적으로 해석하였다. 안정된 수치 해법 개발을 위해 해밀톤 원리에 근거한 변분법을 사용하였으며 얻어진 변분식에 유한 요소법을 적용하여 해석하였다. 비선형 자유표면 유동은 시간영역에서의 초기치 문제로 해석하였으며 자유표면의 위치는 매 계산 시간 간격마다 반복계산에 의해 결정되었다. 수치 해석 결과로는 탱크내에 위치한 파이프에 비선형 슬러싱 유동에 의해 야기되는 유체 충격력을 구하였다.

  • PDF

Critical Free Surface Flows in a Sloshing Tank

  • Scolan, Y.M
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권4호
    • /
    • pp.163-173
    • /
    • 2018
  • There are many issues in fluid structure interactions when dealing with the free surface flows in a sloshing tank. For example the problem of how yielding a highly nonlinear wave with a simple forced motion over a short duration is of concern here. Nonlinear waves are generated in a rectangular tank which is forced horizontally; its motion consists of a single cycle of oscillation. One of the objectives is to end up with a shape of the free surface yielding a wide range of critical flows by tuning few parameters. The configuration that is studied here concerns a plunging breaker accompanied with a critical jet where great kinematics are simulated. The numerical simulations are performed with a twodimensional code which solves the fully nonlinear free surface boundary conditions in Potential Theory.

Seismic response analysis of an unanchored vertical vaulted-type tank

  • Zhang, Rulin;Cheng, Xudong;Guan, Youhai;Tarasenko, Alexander A.
    • Earthquakes and Structures
    • /
    • 제13권1호
    • /
    • pp.67-77
    • /
    • 2017
  • Oil storage tanks are vital life-line structures, suffered significant damages during past earthquakes. In this study, a numerical model for an unanchored vertical vaulted-type tank was established by ANSYS software, including the tank-liquid coupling, nonlinear uplift and slip effect between the tank bottom and foundation. Four actual earthquakes recorded at different soil sites were selected as input to study the dynamic characteristics of the tank by nonlinear time-history dynamic analysis, including the elephant-foot buckling, the liquid sloshing, the uplift and slip at the bottom. The results demonstrate that, obvious elephant-foot deformation and buckling failure occurred near the bottom of the tank wall under the seismic input of Class-I and Class-IV sites. The local buckling failure appeared at the location close to the elephant-foot because the axial compressive stress exceeded the allowable critical stress. Under the seismic input of Class-IV site, significant nonlinear uplift and slip occurred at the tank bottom. Large amplitude vertical sloshing with a long period occurred on the free surface of the liquid under the seismic wave record at Class-III site. The seismic properties of the storage tank were affected by site class and should be considered in the seismic design of large tanks. Effective measures should be taken to reduce the seismic response of storage tanks, and ensure the safety of tanks.

Parametric studies on sloshing in a three-dimensional prismatic tank with different water depths, excitation frequencies, and baffle heights by a Cartesian grid method

  • Jin, Qiu;Xin, Jianjian;Shi, Fulong;Shi, Fan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.691-706
    • /
    • 2021
  • This paper aims to numerically investigate violent sloshing in a partially filled three-dimensional (3D) prismatic tank with or without a baffle, further to clarify the suppressing performance of the baffle and the damping mechanism of sloshing. The numerical model is based on a Cartesian grid multiphase flow method, and it is well validated by nonlinear sloshing in a 3D rectangular tank with a vertical baffle. Then, sloshing in an unbaffled and baffled prismatic tank is parametrically studied. The effects of chamfered walls on the resonance frequency and the impact pressure are analyzed. The resonance frequencies for the baffled prismatic tank under different water depths and baffle heights are identified. Moreover, we investigated the effects of the baffle on the impact pressure and the free surface elevation. Further, the free surface elevation, pressure and vortex contours are analyzed to clarify the damping mechanism between the baffle and the fluid.

장방형탱크 내부 슬로싱 현상에 관한 PIV적용에 관한 연구 (A Study on Application of PIV to Sloshing Phenomenon inside Rectangular Tank)

  • 김광선;최주열;조대환
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2009년도 춘계학술발표회
    • /
    • pp.85-86
    • /
    • 2009
  • 슬로싱 현상은 탱크안의 자유표면을 갖는 유체의 비선형거동으로 탱크안의 구조물에 동적 하중을 발생시키므로 일반적으로 해양 구조물의 설계에 중요한 문제이다. 이 연구에서는 피칭운동을 하는 사각탱크 내에서 자유표면을 갖는 유체의 슬로싱에 대해 실험적으로 연구하였다.

  • PDF

LNG 운반선의 구형 화물창 슬로싱 해석 (Sloshing Load Analysis in Spherical Tank of LNG Carrier)

  • 노병재
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2005년도 특별논문집
    • /
    • pp.22-30
    • /
    • 2005
  • Sloshing loads, produced by the violent liquid free-surface motions inside the cargo tank have become an important design parameter in ship building industry since there have been demands for the increased sizes of the cargo containment system of LNG carriers. In this study, sloshing impact pressure acting on the shell of the spherical cargo tank of an LNG carrier as well as dynamic pressure and flow behavior around the pump tower located at the center of the tank have been calculated. Comparative numerical sloshing simulations for a spherical LNG tank using 2-D LR.FLUIDS which is based on the finite difference method and 3-D MSC.DYTRAN which is capable of calculating nonlinear fluid-structure interaction have been carried out. A method of calculating sloshing-induced dynamic loads and the subsequent structural strength analysis for pump tower of a spherical LNG carrier using MSC. DYTRAN and MSC.NASTRAN have been presented.

  • PDF

투과성 내부재가 설치된 사각형 탱크내의 슬로싱 해석 (Sloshing Analysis in Rectangular Tank with Porous Baffle)

  • 조일형
    • 한국해양공학회지
    • /
    • 제29권1호
    • /
    • pp.1-8
    • /
    • 2015
  • An analytical model of liquid sloshing is developed to consider the energy-loss effect through a partially submerged porous baffle in a horizontally oscillating rectangular tank. The nonlinear boundary condition at the porous baffle is derived to accurately capture both the added inertia effects and the energy-loss effects from an equivalent non-linear drag law. Using the eigenfunction expansion method, the horizontal hydrodynamic force (added mass, damping coefficient) on both the wall and baffle induced by the fluid motion is assessed for various combinations of porosity, submergence depth, and the tank's motion amplitude. It is found that a negative value for the added mass and a sharp peak in the damping curve occur near the resonant frequencies. In particular, the hydrodynamic force and free surface amplitude can be largely reduced by installing the proper porous baffle in a tank. The optimal porosity of a porous baffle is near P=0.1.

Shock absorption of concrete liquid storage tank with different kinds of isolation measures

  • Jing, Wei;Chen, Peng;Song, Yu
    • Earthquakes and Structures
    • /
    • 제18권4호
    • /
    • pp.467-480
    • /
    • 2020
  • Concrete rectangular liquid storage tanks are widely used, but there are many cases of damage in previous earthquakes. Nonlinear fluid-structure interaction (FSI) is considered, Mooney-Rivlin material is used for rubber bearing, nonlinear contact is used for sliding bearing, numerical calculation models of no-isolation, rubber isolation, sliding isolation and hybrid isolation concrete rectangular liquid storage tanks are established; dynamic responses of different structures are compared to verify the effectiveness of isolation methods; and influences of earthquake amplitude, bidirectional earthquake and far-field long-period earthquake on dynamic responses are investigated. Results show that for liquid sloshing wave height, rubber isolation cause amplification effect, while sliding isolation and hybrid isolation have reduction effect; displacement of rubber isolation structure is much larger than that of sliding isolation with limiting-devices and hybrid isolation structure; when PGA is larger, wall cracking probability of no-isolation structure becomes larger, and probability of liquid sloshing wave height and structure displacement of rubber isolation structure exceeds the limit is also larger; under bidirectional earthquake, occurrence probabilities that liquid sloshing wave height and structure displacement of rubber isolation structure exceed the limit will be increased; besides, far-field long-period earthquake mainly influences structure displacement and liquid sloshing wave height. On the whole, control effect of sliding isolation is the best, followed by hybrid isolation, and rubber isolation is the worst.

구조물의 탄성을 고려한 2차원 탱크내 유동해석 (Analysis of Liquid Sloshing in a Two-Dimensional Elastic Tank)

  • 이판묵;홍석원;홍사영
    • 대한조선학회지
    • /
    • 제27권3호
    • /
    • pp.107-116
    • /
    • 1990
  • 구조물의 탄성을 고려한 탱크내 유동은 자유수면을 갖는 유체와 탄성변형하는 구조물이 연성된 시스템으로서 유체유동으로 인한 과도한 구조물변형, 유체의 부가질량 및 부가감쇠력에 의한 구조물의 동특성변화, 구조물 진동으로 인한 유체유동의 왜곡 등이 복합된 비선형 해석이 요구된다. 본 논문에서는 탱크 벽을 1자유도 수평운동하는 강체로 가정하였으며 Lagrangian 유한요소법을 이용하여 유동해석을 수행하였고 유체-구조물 연성문제의 수치적분을 위하여 조합된 implicit-explicit 알고리듬을 도입하였다. 탱크벽의 동특성 변화에 따른 유체-구조물연성 탱크의 동특성변화를 관찰하였으며 파도생성 문제에 관한 수치계산을 수행하였다.

  • PDF