• 제목/요약/키워드: nonlinear site

검색결과 215건 처리시간 0.021초

지반강성을 고려한 중저층 가새모멘트저항골조의 내진 목표성능평가 (Seismic Object Performance Evaluation of Braced Steel Moment Resisting Frames with Low Rise Building under Different Site Stiffness)

  • 김수정;최병정;박호영;이진우
    • 한국지진공학회논문집
    • /
    • 제20권2호
    • /
    • pp.91-101
    • /
    • 2016
  • This study is the compared seismic performance that are difference between the performance of structures on various site classes and beam-column connection. this analysis model was designed the previous earthquake load. To compare the performance levels of the structure was subjected to nonlinear static and nonlinear dynamic analysis. Nonlinear analysis was used to The Perform 3D program. Nonlinear static analysis was compared with the performance point and Nonlinear dynamic analysis was compared the drift ratio(%). Analysis results, the soft site class of the displacement was more increase than rock site classes of the displacement. Also The smaller the displacement was increased beam-column connection stiffness.

전단파 속도가 중저층 철근콘크리트 구조물의 지진 응답에 미치는 영향 (Effect of Shear Wave Velocity on Seismic Response of Low- and Mid-Rise Reinforced Concrete Frames)

  • 김민선;이창석;김병민;전종수
    • 한국지진공학회논문집
    • /
    • 제28권5호
    • /
    • pp.249-255
    • /
    • 2024
  • Strong ground motions at specific sites can cause severe damage to structures. Understanding the influence of site characteristics on the dynamic response of structures is crucial for evaluating their seismic performance and mitigating the potential damage caused by site effects. This study investigates the impact of the average shear wave velocity, as a site characteristic, on the seismic response of low-to-medium-rise reinforced concrete buildings. To explore them, one-dimensional soil column models were generated using shear wave velocity profile from California, and nonlinear site response analyses were performed using bedrock motions. Nonlinear dynamic structural analyses were conducted for reinforced concrete moment-resisting frame models based on the regional information. The effect of shear wave velocity on the structural response and surface ground motions was examined. The results showed that strong ground motions tend to exhibit higher damping on softer soils, reducing their intensity, while on stiffer soils, the ground motion intensity tends to amplify. Consequently, the structural response tended to increase on stiffer soils compared to softer soils.

Seismic behavior of steel cabinets considering nonlinear connections and site-response effects

  • Tran, Thanh-Tuan;Nguyen, Phu-Cuong;So, Gihwan;Kim, Dookie
    • Steel and Composite Structures
    • /
    • 제36권1호
    • /
    • pp.17-29
    • /
    • 2020
  • This paper presents experimental and numerical studies on the seismic responses of the steel cabinet facility considering the nonlinear behavior of connections and site-response effects. Three finite element (FE) models with differences of type and number of connections between steel plates and frame members have been developed to demonstrate adequately dynamic responses of structures. The screw connections with the bilinear force-deformation relationship are proposed to represent the inelastic behavior of the cabinet. The experiment is carried out to provide a verification with improved FE models. It shows that the natural frequencies of the cabinet are sensitive to the plate and frame connectors. The screw connections reduce the free vibration compared to the weld one, with decreased values of 2.82% and 4.87% corresponding to front-to-back and side-to-side directions. Additionally, the seismic responses are investigated for various geological configurations. Input time histories are generated so that their response spectrums are compatible with a required response spectrum via the time-domain spectral matching. The results indicate that both site effects and nonlinear behavior of connections affect greatly on the seismic response of structures.

섭동법을 사용한 사각형 유체저장 탱크의 비선형 유동해석 (Nonlinear Analysis of Sloshing in Rectangular Tanks by Perturbation Approach)

  • 전영선;윤정방
    • 한국지진공학회논문집
    • /
    • 제6권6호
    • /
    • pp.55-64
    • /
    • 2002
  • 사각형 유체저장 탱크내에 저장되어 있는 유체의 비선형 유동거동을 섭동법을 사용하여 해석하였다. 제시된 방법에 의한 비선형 해석결과는 기존의 연구결과와 잘 일치하였다. 지반특성과 탱크형상에 따른 유체 표면의 비선형 거동 특성을 분석하여 비선형 해석의 중요성을 입증하였다. 유체의 비선형 거동은 토사지반에서 크게 나타나며 특히 Broad Tank에서의 응답은 대단히 크게 나타났다. 일반적으로 유체표면 유동의 비선형 해석결과는 선형해석결과 보다 크게 나타났다. 유체저장탱크의 설계시 선형해석 만으로는 최대응답을 과소평가할 수 있으므로 비선형 해석을 반드시 수행할 필요가 있다.

비선형 응답이력해석의 영향인자에 대한 사례연구 - 1989 Loma Prieta 지진 계측기록을 중심으로 - (Case Study on Influential Factors of Nonlinear Response History Analysis - Focused on 1989 Loma Prieta Earthquake -)

  • 유계항;이진선
    • 한국지반공학회논문집
    • /
    • 제33권12호
    • /
    • pp.45-58
    • /
    • 2017
  • 최근 들어 시설물별 내진설계기준이 성능기반 내진설계로 전환됨에 따라, 신뢰성있는 비선형 응답이력해석(Response-history analysis, RHA)에 대한 요구가 높아지고 있다. 그러나, 부지응답해석 분야에 있어서는 1970년대 이후 등가선형 해석이 표준절차로 자리잡고 있음에 따라, 이를 대체하기 위해서는 비선형 응답이력해석의 신뢰성이 확보되어야 한다. 본 논문에서는 1989년 미국 Loma Prieta 지진기록을 바탕으로 다층지반에 대해서 비선형 RHA를 이용한 부지응답해석 결과의 신뢰성을 검증하였다. 이를 위하여, 비선형 RHA를 위한 비선형 지반모델의 선정방법과 3차원 해석시 요구되는 기반암 경계조건의 영향을 평가 하였다. 평가 결과, 제한된 조건하에서 가장 정확한 비선형 지반모델과 경계조건을 적용 시 비선형 RHA의 결과는 등가선형 해석결과와 유의미한 차이는 발생하지 않음을 알 수 있었다. 또한, 3차원 해석을 시행하는 경우, 전체 모델의 회전운동을 제어하기 위하여 최 하단부 흡수 경계조건을 적용해야 함을 알 수 있었다.

Seismic response analysis of an unanchored vertical vaulted-type tank

  • Zhang, Rulin;Cheng, Xudong;Guan, Youhai;Tarasenko, Alexander A.
    • Earthquakes and Structures
    • /
    • 제13권1호
    • /
    • pp.67-77
    • /
    • 2017
  • Oil storage tanks are vital life-line structures, suffered significant damages during past earthquakes. In this study, a numerical model for an unanchored vertical vaulted-type tank was established by ANSYS software, including the tank-liquid coupling, nonlinear uplift and slip effect between the tank bottom and foundation. Four actual earthquakes recorded at different soil sites were selected as input to study the dynamic characteristics of the tank by nonlinear time-history dynamic analysis, including the elephant-foot buckling, the liquid sloshing, the uplift and slip at the bottom. The results demonstrate that, obvious elephant-foot deformation and buckling failure occurred near the bottom of the tank wall under the seismic input of Class-I and Class-IV sites. The local buckling failure appeared at the location close to the elephant-foot because the axial compressive stress exceeded the allowable critical stress. Under the seismic input of Class-IV site, significant nonlinear uplift and slip occurred at the tank bottom. Large amplitude vertical sloshing with a long period occurred on the free surface of the liquid under the seismic wave record at Class-III site. The seismic properties of the storage tank were affected by site class and should be considered in the seismic design of large tanks. Effective measures should be taken to reduce the seismic response of storage tanks, and ensure the safety of tanks.

Probabilistic pounding analysis of high-pier continuous rigid frame bridge with actual site conditions

  • Jia, Hongyu;Zhao, Jingang;Li, Xi;Li, Lanping;Zheng, Shixiong
    • Earthquakes and Structures
    • /
    • 제15권2호
    • /
    • pp.193-202
    • /
    • 2018
  • This paper studied the probability of pounding occurred between decks and abutments of a long span high-pier continuous rigid fame bridge subjected to ground motions with local soil effect. A pounding probability analysis methodology has been proposed using peak acceleration at bedrock as intensity measure (IM) for multi-support seismic analysis. The bridge nonlinear finite element (FE) models was built with four different separation distances. Effect of actual site condition and non-uniform spatial soil profiles on seismic wave propagating from bedrock to ground surface is modelled. Pounding probability of the high-pier bridge under multi-support seismic excitations (MSSE) is analyzed based on the nonlinear incremental dynamic analysis (n-IDA). Pounding probability results under uniform excitations (UE) without actual local site effect are compared with that under MSSE with site effect. The study indicates that the required design separation length between deck and abutment under uniform excitations is larger than that under MSSE as the peak acceleration at bedrock increases. As the increase of both separation distance between deck and abutment and the peak acceleration, the probability of pounding occurred at a single abutment or at two abutments simultaneously under MSSE is less than that under UE. It is of great significance considering actual local site effect for determining the separation distance between deck and abutment through the probability pounding analysis of the high-pier bridge under MSSE.

구조물-지반 상호작용 영향을 고려한 새로운 지반계수 평가방법에 대한 제안 (Proposed New Evaluation Method of the Site Coefficients Considering the Effects of the Structure-Soil Interaction)

  • 김용석
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.327-336
    • /
    • 2006
  • Site coefficients in IBC and KBC codes have some limits to predict the rational seismic responses of a structure, because they consider only the effect of the soil amplification without the effects of the structure-soil interaction. In this study, upper and lower limits of site coefficients are estimated through the pseudo 3-D elastic seismic response analyses of structures built on linear or nonlinear soil layers considering the structure-soil interaction effects. Soil characteristics of site classes of A, B, and C were assumed to be linear, and those of site classes of D and E were done to be nonlinear and the Ramberg-Osgood model was used to evaluate shear modulus and damping ratio of a soil layer depending on the shear wave velocity of a soil layer. Seismic analyses were performed with 12 weak or moderate earthquake records, scaled the peak acceleration to 0.1g or 0.2g and deconvoluted as earthquake records at the bedrock 30m beneath the outcrop. With the study results of the elastic seismic response analyses of structures, new standard response spectrum and upper and lower limits of the site coefficients of Fa and Fv at the short period range and the period of 1 second are suggested Including the structure-soil interaction effects.

  • PDF

Site response analysis using true coupled constitutive models for liquefaction triggering

  • Cristhian C. Mendoza-Bolanos;Andres Salas-Montoya;Oscar H. Moreno-Torres;Arturo I. Villegas-Andrade
    • Earthquakes and Structures
    • /
    • 제25권1호
    • /
    • pp.27-41
    • /
    • 2023
  • This study focused on nonlinear effective stress site response analysis using two coupled constitutive models, that is, the DM model (Dafalias and Manzari 2004), which incorporated a simple plasticity sand model accounting for fabric change effects, and the PMDY03 model (Khosravifar et al. 2018), that is, a 3D model for earthquake-induced liquefaction triggering and postliquefaction response. A detailed parametric study was conducted to validate the effectiveness of nonlinear site response analysis and porewater pressure (PWP) generation through a true coupled formulation for assessing the initiation of liquefaction at ground level. The coupled models demonstrated accurate prediction of liquefaction triggering, which was in line with established empirical liquefaction triggering relations in published databases. Several limitations were identified in the evaluation of liquefaction using the cyclic stress method, despite its widespread implementation for calculating liquefaction triggering. Variations in shear stiffness, represented by changes in shear wave velocity (Vs1), exerted the most significant influence on site response. The study further indicated that substantial differences in response spectra between nonlinear total stress and nonlinear effective stress analyses primarily occurred when liquefaction was triggered or on the verge of being triggered, as shown by excess PWP ratios approaching unity. These differences diminished when liquefaction occurred towards the later stages of intense shaking. The soil response was predominantly influenced by the higher stiffness values present prior to liquefaction. A key contribution of this study was to validate the criteria used to assess the triggering of level-ground liquefaction using true coupled effective-stress constitutive models, while also confirming the reliability of numerical approximations including the PDMY03 and DM models. These models effectively captured the principal characteristics of liquefaction observed in field tests and laboratory experiments.

Site effects and associated structural damage analysis in Kathmandu Valley, Nepal

  • Gautam, Dipendra;Forte, Giovanni;Rodrigues, Hugo
    • Earthquakes and Structures
    • /
    • 제10권5호
    • /
    • pp.1013-1032
    • /
    • 2016
  • Several historical earthquakes demonstrated that local amplification and soil nonlinearity are responsible for the uneven damage pattern of the structures and lifelines. On April $25^{th}$ 2015 the Mw7.8 Gorkha earthquake stroke Nepal and neighboring countries, and caused extensive damages throughout Kathmandu valley. In this paper, comparative studies between equivalent-linear and nonlinear seismic site response analyses in five affected strategic locations are performed in order to relate the soil behavior with the observed structural damage. The acceleration response spectra and soil amplification are compared in both approaches and found that the nonlinear analysis better represented the observed damage scenario. Higher values of peak ground acceleration (PGA) and higher spectral acceleration have characterized the intense damage in three study sites and the lower values have also shown agreement with less to insignificant damages in the other two sites. In equivalent linear analysis PGA varies between 0.29 to 0.47 g, meanwhile in case of nonlinear analysis it ranges from 0.17 to 0.46 g. It is verified from both analyses that the PGA map provided by the USGS for the southern part of Kathmandu valley is not properly representative, in contrary of the northern part. Similarly, the peak spectral amplification in case of equivalent linear analysis is estimated to be varying between 2.3 to 3.8, however in case of nonlinear analysis, the variation is observed in between 8.9 to 18.2. Both the equivalent linear and nonlinear analysis have depicted the soil fundamental period as 0.4 and 0.5 sec for the studied locations and subsequent analysis for seismic demands are correlated.