• Title/Summary/Keyword: nonlinear response spectra

Search Result 78, Processing Time 0.025 seconds

Effect of design spectral shape on inelastic response of RC frames subjected to spectrum matched ground motions

  • Ucar, Taner;Merter, Onur
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.293-306
    • /
    • 2019
  • In current seismic design codes, various elastic design acceleration spectra are defined considering different seismological and soil characteristics and are widely used tool for calculation of seismic loads acting on structures. Response spectrum analyses directly use the elastic design acceleration spectra whereas time history analyses use acceleration records of earthquakes whose acceleration spectra fit the design spectra of seismic codes. Due to the fact that obtaining coherent structural response quantities with the seismic design code considerations is a desired circumstance in dynamic analyses, the response spectra of earthquake records used in time history analyses had better fit to the design acceleration spectra of seismic codes. This paper evaluates structural response distributions of multi-story reinforced concrete frames obtained from nonlinear time history analyses which are performed by using the scaled earthquake records compatible with various elastic design spectra. Time domain scaling procedure is used while processing the response spectrum of real accelerograms to fit the design acceleration spectra. The elastic acceleration design spectra of Turkish Seismic Design Code 2007, Uniform Building Code 1997 and Eurocode 8 are considered as target spectra in the scaling procedure. Soil classes in different seismic codes are appropriately matched up with each other according to $V_{S30}$ values. The maximum roof displacements and the total base shears of considered frame structures are determined from nonlinear time history analyses using the scaled earthquake records and the results are presented by graphs and tables. Coherent structural response quantities reflecting the influence of elastic design spectra of various seismic codes are obtained.

Comparative Evaluation of Nonlinear Seismic Responses of Bridge Structures Using Different Analysis Technique (해석방법에 따른 교량 구조물의 비선형지진응답 비교연구)

  • Kwon, Kyong-Il;Joe, Yang-Hee;Kim, Jae-Suk
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.396-404
    • /
    • 2005
  • Nonlinear responses of structures may be obtained through three different methods. They are time-history analysis techniques, response spectrum method, and R-factor method. The nonlinear response spectrum method is frequently used in the practice, because the time history analysis method is time-consuming and complicated. There are two different approaches in obtaining the nonlinear response spectrum, which results in "constant displacement ductility spectra" and "constant damage spectra", respectively. The nonlinear response spectra of the various time-histories had been computed and the results were comparatively evaluated in this study. The study results showed that the existing constant displacement ductility spectra can induce unconservative design especially for the structures on soft soil base. This unconservatism can be removed by using the newly proposed constant damage spectra.

  • PDF

Prediction of Nonlinear Seismic Response (지진하중에 의한 구조물의 비선형 거동 예측)

  • Kim, Hee Joong
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.77-84
    • /
    • 1996
  • The structural members under seismic loading actually show inelastic behavior, so the inelastic responses should be calculated for the seismic design of structures or estimating the structural damage level. Although direct time history analysis may calculate the exact dynamic nonlinear responses for given ground motions, this approach involves a high computational cost and long period. Therefore, it should be developed the approach to estimate nonlinear responses for the practical purpose. The artificial earthquake accelerograms were generated to obtain the smoothed responses spectra, and the samples of generated accelerogram for each seismic event was used to examine average nonlinear response spectra. The stabilized response spectra for each earthquake event was used to evaluate the effects of various yield strength ratios, damping values and nonlinear hysteretic models. The approach, which can simply predict the nonlinear seismic responses of structures, was shown in this study.

  • PDF

Prediction Equation of Spectral Acceleration Responses in Low-to-Moderate Seismic Regions using Domestic and Overseas Earthquake Records (국내·외 계기지진 정보를 활용한 중·약진 지역의 스펙트럴 가속도 응답 예측식)

  • Shin, Dong Hyeon;Kim, Hyung Joon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.77-86
    • /
    • 2018
  • This study develops an empirical prediction equation of spectral acceleration responses of earthquakes which can induce structural damages. Ground motion records representing hazards of low-to-moderate seismic regions were selected and organized with several influential factors affecting the response spectra. The empirical equation and estimator coefficients for acceleration response spectra were then proposed using a robust nonlinear optimization coupled with a regression analysis. For analytical verification of the prediction equation, response spectra used for low-to-moderate seismic regions were estimated and the predicted results were comparatively evaluated with measured response spectra. As a result, the predicted shapes of response spectra can simulate the graphical shapes of measured data with high accuracy and most of predicted results are distributed inside range of correlation of variation (COV) of 30% from perfectly correlated lines.

Nonlinear, seismic response spectra of smart sliding isolated structures with independently variable MR dampers and variable stiffness SAIVS system

  • Nagarajaiah, Satish;Mao, Yuqing;Saharabudhe, Sanjay
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.375-393
    • /
    • 2006
  • Under high velocity, pulse type near source earthquakes semi-active control systems are very effective in reducing seismic response base isolated structures. Semi-active control systems can be classified as: 1) independently variable stiffness, 2) independently variable damping, and 3) combined variable stiffness and damping systems. Several researchers have studied the effectiveness of independently varying damping systems for seismic response reduction of base isolated structures. In this study effectiveness of a combined system consisting of a semi-active independently variable stiffness (SAIVS) device and a magnetorheological (MR) damper in reducing seismic response of base isolated structures is analytically investigated. The SAIVS device can vary the stiffness, and hence the period, of the isolation system; whereas, the MR damper enhances the energy dissipation characteristics of the isolation system. Two separate control algorithms, i.e., a nonlinear tangential stiffness moving average control algorithm for smooth switching of the SAIVS device and a Lyapunov based control algorithm for damping variation of MR damper, are developed. Single and multi degree of freedom systems consisting of sliding base isolation system and both the SAIVS device and MR damper are considered. Results are presented in the form of nonlinear response spectra, and effectiveness of combined variable stiffness and variable damping system in reducing seismic response of sliding base isolated structures is evaluated. It is shown that the combined variable stiffness and variable damping system leads to significant response reduction over cases with variable stiffness or variable damping systems acting independently, over a broad period range.

Nonlinear Response Spectra of Artificial Earthquake Waves Compatible with Design Spectrum (설계용 스펙트럼에 적합한 인공지진파에 의한 비선형 응답 특성의 분석)

  • Jun, Dae-Han;Kang, Pyeong-Doo;Kim, Jae-Ung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.63-71
    • /
    • 2006
  • In seismic response analysis of building structures, the input ground accelerations have considerable effect on the nonlinear response characteristics of structures. The characteristics of soil and the locality of the site where those ground motions were recorded affect on the contents of earthquake waves. Therefore, it is difficult to select appropriate input ground motions for seismic response analysis. This study describes a generation of artificial earthquake wave compatible with seismic design spectrum, and also evaluates the nonlinear response spectra by the simulated earthquake motions. The artificial earthquake wave are generated according to the previously recorded earthquake waves in past earthquake events. The artificial wave have identical phase angles to the recorded earthquake wave, and their overall response spectra are compatible with seismic design spectrum with 5% critical viscous damping. Each simulated earthquake wave has a identical phase angles to the original recorded ground acceleration, and match to design spectra in the range of period from 0.02 to 10.0 seconds. The seismic response analysis is performed to examine the nonlinear response characteristics of SDOF system subjected to the simulated earthquake waves. It was concluded that the artificial earthquake waves simulated in this paper are applicable as input ground motions for a seismic response analysis of building structures.

Simplified procedure for seismic demands assessment of structures

  • Chikh, Benazouz;Mehani, Youcef;Leblouba, Moussa
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.455-473
    • /
    • 2016
  • Methods for the seismic demands evaluation of structures require iterative procedures. Many studies dealt with the development of different inelastic spectra with the aim to simplify the evaluation of inelastic deformations and performance of structures. Recently, the concept of inelastic spectra has been adopted in the global scheme of the Performance-Based Seismic Design (PBSD) through Capacity-Spectrum Method (CSM). For instance, the Modal Pushover Analysis (MPA) has been proved to provide accurate results for inelastic buildings to a similar degree of accuracy than the Response Spectrum Analysis (RSA) in estimating peak response for elastic buildings. In this paper, a simplified nonlinear procedure for evaluation of the seismic demand of structures is proposed with its applicability to multi-degree-of-freedom (MDOF) systems. The basic concept is to write the equation of motion of (MDOF) system into series of normal modes based on an inelastic modal decomposition in terms of ductility factor. The accuracy of the proposed procedure is verified against the Nonlinear Time History Analysis (NL-THA) results and Uncoupled Modal Response History Analysis (UMRHA) of a 9-story steel building subjected to El-Centro 1940 (N/S) as a first application. The comparison shows that the new theoretical approach is capable to provide accurate peak response with those obtained when using the NL-THA analysis. After that, a simplified nonlinear spectral analysis is proposed and illustrated by examples in order to describe inelastic response spectra and to relate it to the capacity curve (Pushover curve) by a new parameter of control, called normalized yield strength coefficient (${\eta}$). In the second application, the proposed procedure is verified against the NL-THA analysis results of two buildings for 80 selected real ground motions.

A Study on the Applicatin of Design Response Spectrum to a Specific Soil Profile (특정지반에 적용할 설계응답스펙트럼에 대한 고찰)

  • 박형기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.91-99
    • /
    • 2001
  • This paper is for a reasonable selection of design response spectra for the seismic design of specific types of soil-structure interaction systems, e.g., underground structure within flexible soil profiles of structures on the shallow soil layers on the stiff bed rock. the existing backup data used for determining the design response spectra of the Code have been investigated and evaluated. For this purpose, various types of free field analyses have been performed using one-dimensional wave propagation theory considering the nonlinear properties of the soil profile. As a result, a reasonable approach of determining input response spectra for specific soil profiles has been proposed to be compatible to the design response spectra of the Code.

  • PDF

Effect of Hysteretic Models on the Inelastic Design Spectra (비탄성 설계 스펙트럼에 의한 이력 모델의 효과)

  • 한상환;오영훈;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.214-224
    • /
    • 1999
  • The design response spectrum has been widely used in seismic design to estimate force and deformation demands of structures imposed by Earthquake Ground Motion (EQGM). Inelastic Design Response Spectra (IDRS) to specify design yielding strength in seismic codes are obtained by reducing the ordinates of Linear Elastic Design Response Spectrum (LEDRS) by strength reduction factor (R). Since a building is designed using reduced design spectrum (IDRS) rather than LEDRS in current seismic design procedures it allows structures behave inelastically during design level EQGM. Inelastic Response Spectra (IRS) depend not only on the characteristics of the expected ground motion at a given site, but also on the dynamic properties and nonlinear characteristics of a structure. However, it has not been explicitly investigated the effect of different hysteretic models on IRS. In this study, the effect of hysteretic models on IRS is investigated.

  • PDF

Response Modification Coefficient Using Natural Period (고유진동주기를 이용한 응답수정계수)

  • 김희중
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.229-237
    • /
    • 1996
  • In some current procedures, ground motions from different sources have been scaled by their peak ground accelerations and combined to obtain smoothed response spectra for specific regions. As consideration of the inelastic deformation capacity of structure, inelastic deformations are permitted under seismic ground excitation in all codes. In the ATC(Applied Technology Council) and UBC(Uniform Building Code), the inelastic design spectrum is obtained by reducing the elastic design spectrum by a factor that is independent of structural period. In this study, the average of nonlinear response spectra calculated from a sample of 20 records for each event are constructed to obtain the smoothed response spectra. These response spectra are used to examine the effects of structural strength factors such as the yield strength ratio and damping value. Through the regression analysis of nonlinear response of system for a given damping value and yield strength ratio, the required yield strength for seismic design can be estimated for a certain earthquake event. And a response modification coefficient depending on the natural period for current seismic design specifications are proposed.

  • PDF