• Title/Summary/Keyword: nonlinear prediction

Search Result 912, Processing Time 0.027 seconds

Study on Nonlinearites of Short Term, Beat-to-beat Variability in Cardiovascular Signals (심혈관 신호에 있어서 단기간 beat-to-beat 변이의 비선형 역할에 관한 연구)

  • Han-Go Choi
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.151-158
    • /
    • 2003
  • Numerous studies of short-term, beat-to-beat variability in cardiovascular signals have used linear analysis techniques. However, no study has been done about the appropriateness of linear techniques or the comparison between linearities and nonlinearities in short-term, beat-to-beat variability. This paper aims to verify the appropriateness of linear techniques by investigating nonlinearities in short-term, beat-to-beat variability. We compared linear autoregressive moving average(ARMA) with nonlinear neural network(NN) models for predicting current instantaneous heart rate(HR) and mean arterial blood pressure(BP) from past HRs and BPs. To evaluate these models. we used HR and BP time series from the MIMIC database. Experimental results indicate that NN-based nonlinearities do not play a significant role and suggest that 10 technique provides adequate characterization of the system dynamics responsible for generating short-term, beat-to-beat variability.

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -With Application to an Static Behavior Analysis of Axisymmetric Shell- (탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석 (III) -비선형 정적거동을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.3
    • /
    • pp.72-82
    • /
    • 1997
  • In all inelastic deformations time rate effects are always present to some degree. Whether or not their exclusion has a significant influence on the prediction of the material behaviour depends upon several factors. In the study of structural components under static loading conditions at normal temperature it is accepted that time rate effects are generally not important. However metals, especially under high temperatures, exhibit simultaneously the phenomena of creep and viscoplasticity. In this study, elastoplastic and elasto-viscoplastic models include nonlinear geometrical effects were developed and several numerical examples are also included to verify the computer programming work developed here in this work. Comparisons of the calculated results, for the elasto-viscoplastic analysis of an internally pressurised thick cylinder under plane strain condition, have shown that the model yields excellent results. The results obtained from the numerical examples for an elasto-viscoplastic analysis of the Nuclear Reinforced Concrete Containment Structure(NRCCS) subjected to an incrementally applied internal pressure were summarized as follows : 1. The steady state hoop stress distribution along the shell layer of dome and dome wall junction part of NRCCS were linearly behave and the stress in interior surfaces was larger than that in exterior. 2.However in the upper part of the wall of NRCCS the steady state hoop stress in creased linearly from its inner to outer surfaces, being the exact reverse to the previous case of dome/dome-wall junction part. 3.At the lower part of wall of NRCCS, the linear change of steady state hoop stress along its wall layer began to disturb above a certain level of load increase.

  • PDF

Strength of Exterior Flat Plate-Column Connections Subjected to Unbalanced Moment (불균형 휨모멘트를 받는 플랫 플레이트-기둥 외부접합부의 강도)

  • Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.470-481
    • /
    • 2003
  • Exterior plate-column connection has an unsymmetrical critical section for eccentric shear of which perimeter is less than that of interior connection, and hence, around the connection, unbalanced moment and eccentric shear are developed by both gravity load and lateral loads. Therefore, exterior connection is susceptible to punching shear failure. Current design provision cannot accurately explain strength of existing experiments, partly due to the complexity in the behavior of exterior plate-column connection, or partly due to the theoretical deficiency of the strength analysis model adopted. In the present study, nonlinear finite element analyses were performed for exterior connections belonging to continuous flat plate. For each direction of lateral load, the behavior and strength of exterior plate-column connection were quite different. Based on the numerical result, strength prediction model for exterior connection was proposed for each direction of lateral load. Compared with existing experiments, the proposed method was verified.

An Evaluation of Elasticity Modulus and Tensile Strength of Ultra High Performance Concrete (강섬유 보강 초고성능 콘크리트의 탄성계수 및 인장강도 평가)

  • Ryu, Gum-Sung;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.206-211
    • /
    • 2015
  • Recently, for UHPC (Ulta High Performance Concrete) which is researched actively, as the tensile strength is absolutely influenced on the content of steel fiber, in this paper, experiments of compressive strength, elasticity modulus and tensile strength were performed according to compressive strength and content of steel fiber as variables. By the test results, compressive strength, elasticity modulus and tensile strength are proportioned and have a good correlation and according to content of steel fiber, compressive and tensile strength are also proportioned and have a good correlation. In case of elasticity modulus, the difference between test and present design code is not large, so it is possible to adapt to present design code. On the other hand, in case of tensile strength, as there is no specification of present design code, new prediction equation is proposed by using nonlinear regression analysis and the proposed equation have a good correlation to test results.

Theoretical Prediction of Vertical Motion of Planing Monohull in Regular Head Waves - Improvement of Zarnick's Nonlinear Strip Method (선수 규칙파 중 단동 활주선의 연직면 거동 추정 - Zarnick 비선형 스트립 방법의 개선)

  • Zhang, Yang;Yum, Deuk-Joon;Kim, Dong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.217-223
    • /
    • 2015
  • In order to predict the motions of a planing hull in waves, it is necessary to accurately estimate the force components acting on the hull such as the hydrodynamic force, buoyancy, and friction, as well as the wave exciting force. In particular, based on strip theory, hydrodynamic forces can be estimated by the summation of the forces acting on each cross-section of the hull. A non-linear strip method for planing hulls was mathematically developed by Zarnick, and his formula has been used to predict the vertical motions of prismatic planing hulls in regular waves. In this study, several improvements were added to Zarnick's formula to predict the vertical motions of warped planing hulls. Based on calm water model test results, the buoyancy force and moment correction coefficients were modified. Further improvements were made in the pile-up correction. Pile-up correction factors were changed according to variations of the deadrise angles using the results found in previous research. Using the same hull form, captive model tests were carried out in other recent research, and the results were compared with the present calculation results. The comparison showed reasonably good agreements between the model tests and present calculations.

Prediction of the Natural Frequency of a Soil-Pile-Structure System during an earthquake (지진하중을 받는 말뚝 시스템의 고유 진동수 예측)

  • Yang, Eui-Kyu;Kwon, Seon-Yong;Choi, Jung-In;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.976-984
    • /
    • 2009
  • This study proposes a simple method that uses a simple mass-spring model to predict the natural frequency of a soil-pile-structure system in sandy soil. This model includes a pair of matrixes, i.e., a mass matrix and a stiffness matrix. The mass matrix is comprised of the masses of the pile and superstructure, and the stiffness matrix is comprised of the stiffness of the pile and the spring coefficients between the pile and soil. The key issue in the evaluation of the natural frequency of a soil-pile system is the determination of the spring coefficient between the pile and soil. To determine the reasonable spring coefficient, subgrade reaction modulus, nonlinear p-y curves and elastic modulus of the soil were utilized. The location of the spring was also varied with consideration of the infinite depth of the pile. The natural frequencies calculated by using the mass-spring model were compared with those obtained from 1-g shaking table model pile tests. The comparison showed that the calculated natural frequencies match well with the results of the 1-g shaking table tests within the range of computational error when the three springs, whose coefficients were calculated using Reese's(1974) subgrade reaction modulus and Yang's (2009) dynamic p-y backbone curves, were located above the infinite depth of the pile.

  • PDF

Modal Combination Method for Prediction of Story Earthquake Load Profiles (층지진하중분포 예측을 위한 모드조합법)

  • Eom, Tae-Sung;Lee, Hye-Lin;Park, Hong-Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.65-75
    • /
    • 2006
  • Nonlinear pushover analysis is used to evaluate the earthquake response of building structures. To accurately predict the inelastic response of a structure, the prescribed story load profile should be able to describe the earthquake force profile which actually occurs during the time-history response of the structure. In the present study, a new modal combination method was developed to predict the earthquake load profiles of building structures. In the proposed method, multiple story load profiles are predicted by combining the modal spectrum responses multiplied by the modal combination factors. Parametric studies were performed far moment-resisting frames and walls. Based on the results. the modal combination factors were determined according to the hierarchy of each mode affecting the dynamic responses of structures. The proposed modal combination method was applied to prototype buildings with and without vertical irregularity. The results showed that the proposed method predicts the actual story load profiles which occur during the time-history responses of the structures.

A Study on the Prediction of the Nonlinear Chaotic Time Series Using Genetic Algorithm based Fuzzy Neural Network (유전 알고리즘을 이용한 퍼지신경망의 시계열 예측에 관한 연구)

  • Park, In-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.91-97
    • /
    • 2011
  • In this paper we present an approach to the structure identification based on genetic algorithm and to the parameter identification by hybrid learning method in neuro-fuzzy-genetic hybrid system in order to predicate the Mackey-Glass Chaotic time series. In this scheme the basic idea consists of two steps. One is the construction of a fuzzy rule base for the partitioned input space via genetic algorithm, the other is the corresponding parameters of the fuzzy control rules adapted by the backpropagation algorithm. In an attempt to test the performance the proposed system, three patterns, x(t-3), x(t-6) and x(t-9), was prepared according to time interval. It was through lots of simulation proved that the initial small error of learning owed to the good structural identification via genetic algorithm. The performance was showed in Table 2.

Development of Structural Analysis System of Bow Flare Structure(1) - Prediction of Wave Impact Load Characteristics - (선수 구조부 구조해석 시스템 개발(1) - 파랑충격하중 특성의 추정 -)

  • S.G. Lee;M.S. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.77-86
    • /
    • 1999
  • The bow flare structure of a ship is designed considering wave impact loads largely caused by relative motion of the ship and wave at rough sea. Empirical design is still used because impact phenomenon and structural behaviour due to wave impact load can not examined accurately. The objective of this study is, as the first step, to predict wave impact loads giving the structural damages to the bow flare structure from the damage data inversely, using dynamic nonlinear finite element code LS/DYNA3D, and to perform various parametric studies of wave impact pressure curve for its characteristics, such as peak height, duration time, tail height, rise time, etc.. The followings were obtained from this study: Dynamic structural responses against wave impact loads are largely affected by impact pressure impulse whose amount during duration time until peak deformation is very important.

  • PDF

An improved polynomial model for top -and seat- angle connection

  • Prabha, P.;Marimuthu, V.;Jayachandran, S. Arul;Seetharaman, S.;Raman, N.
    • Steel and Composite Structures
    • /
    • v.8 no.5
    • /
    • pp.403-421
    • /
    • 2008
  • The design provisions for semi-rigid steel frames have been incorporated in codes of practice for steel structures. In order to do the same, it is necessary to know the experimental moment-relative rotation (M-${\theta}_r$) behaviour of beam-to-column connections. In spite of numerous publications and collection of several connection databases, there is no unified approach for the semi-rigid design of steel frames. Amongst the many connection models available, the Frye-Morris polynomial model, with its limitations reported in the literature, is simple to adopt at least for the linear design space. However this model requires more number of connection tests and regression analyses to make it a realistic prediction model. In this paper, 3D nonlinear finite element (FE) analysis of beam-column connection specimens, carried out using ABAQUS software, for evaluating the M-${\theta}_r$ behaviour of semi-rigid top and seat-angle (TSA) bolted connections are described. The finite element model is validated against experimental behaviour of the same connection with regard to their moment-rotation behaviour, stress distribution and mode of failure of the connections. The calibrated FE model is used to evaluate the performance of the Frye-Morris polynomial model. The results of the numerical parametric studies carried out using the validated FE model have been used in proposing modifications to the Frye-Morris model for TSA connection in terms of the powers of the size parameters.