• Title/Summary/Keyword: nonlinear medium

Search Result 272, Processing Time 0.022 seconds

Effects of Ionic Strength in the Medium on Sample Preconcentration Utilizing Nano-interstices between Self-Assembled Monolayers of Gold Nanoparticles

  • Nguyen, Ngoc-Viet;Wu, Jian-Sheng;Jen, Chun-Ping
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.317-325
    • /
    • 2018
  • This paper investigated the effects of ionic strength in the medium on a preconcentrator for a protein sample with low concentration. The preconcentration chip was designed and fabricated using a polydimethylsiloxane replica through standard lithophotography. A glass substrate is silanized prior to functionalizing the nanoparticles for self-assembly at a designed region. Due to the overlap of electrical double layers in a nanofluidic channel, a concentration polarization effect can be achieved using an electric field. A nonlinear electrokinetic flow is induced, resulting in the fast accumulation of proteins in front of the induced ionic depletion zone, so called exclusion-enrichment effect. Thus, the protein sample can be driven by electroosmotic flow and accumulated at a specific location. The chip is used to collect fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA) diluted in phosphate-buffered saline (PBS) buffer solution. Different concentrations of the buffer media were studied herein. Fluorescence intensity images show that the buffer concentration of 4 mM is more appropriate than all the other ones. The sample of FITC-BSA with an initial concentration of $10{\mu}M$ in the 4 mM PBS solution increases its concentration at the desired region by up to 50 times within 30 min, demonstrating the results in this investigation.

A Study on the Impact of Firm Size on the Threshold Point from Nonlinear Relationship between CSR and Firm Value (기업의 규모별 특성이 사회적 책임과 기업가치 간의 비선형 관계를 유발하는 임계점에 미치는 영향에 대한 연구)

  • Kim, Jong-Hee
    • Asia-Pacific Journal of Business
    • /
    • v.11 no.2
    • /
    • pp.207-233
    • /
    • 2020
  • Purpose - The purpose of this paper analyzes the relationship between the Corporate Social Responsibility(CSR) and Corporate Value to estimate whether the characteristics of Firm can change this relationship. Design/methodology/approach - This paper utilizes the total 776 firms' data over the period 2014-2018, and develops a new ESG index which was estimated by PCA. Findings - First, the estimated ESG index implies that Large company has the highest value of CSR, while Medium sized and Small company have the relatively low one. And comparing to the case of 2014, the trend of ESG index in Large company does not decrease in 2018. Second, there is a clear and significant non linear relationship between CSR and corporate value, it implies that the U-shaped exists in the Korean Firms. Such a tendency is mush stronger in the Large company. Third, the new ESG index indicates that it takes more time to increase Firm value in the Medium sized and Small company while there is a high possibility of increasing value in Large company from the little gab between the threshold points and mean value of ESG. Research implications or Originality - The non linear tendency between the Corporate Social Responsibility and Corporate Value is strongly affected by Firm size and the relative high quintile of ESG, but it is less affected by Firm history.

A characteristics study on the Second-harmonic generation conversion efficiency of Pulsed Nd:YAG Laser adopted Superposition multiple Mesh Networks (중첩다단 메쉬회로를 적용한 펄스형 Nd:YAG 레이저의 2차 고조파 변환효율에 관한 특성연구)

  • 김휘영
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.4
    • /
    • pp.565-572
    • /
    • 2001
  • At the most recent years, laser medical instruments, laser applications and laser nuclear fusion need strong visible light and ultraviolet rays. Nonlinear optical devices, such as harmonic generators and parametric oscillators, provide a means of extending the frequency range of available laser sources. Frequency conversion is a useful technique for extending the utility of high-power lasers. It utilizes the nonlinear optical response of an optical medium in intense radiation fields to generate new frequencies. These progresses have been used to generate high-power radiation in all spectral regions, from the ultraviolet to the far infrared. Optical parametric oscillators and amplifiers generate two waves of lower frequency They are capable of generating a range of wavelengths from a single frequency source, in some cases spanning the entire visible and near infrared regions. Consequently, in order to obtain the green light, the pulsed Nd:YAG laser using multiple-mesh PFN(Pulsed Forming Network) method with Nonlinear optical device was adopted. We compared the current pulseshapes with the laser output energy, and conversion efficiency.

  • PDF

Adoption of Nonlinear Resonant Ultrasonic Spectroscopy for the Evaluation of Stress State on Concrete in Prestressed Beam (프리스트레스트 보의 콘크리트 응력 수준 평가를 위한 비선형 초음파 공진 기법의 적용)

  • Kim, Gyu-Jin;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.215-222
    • /
    • 2017
  • In order to evaluate a stress state of concrete according to the change of tensile force of prestressed beam, improved nonlinear resonant ultrasonic spectroscopy(NRUS) method is proposed. This technique is advantageous to evaluate the stress state in initial state because the method shows much higher sensitivity than existing linear ultrasonic methods. The NRUS technique measure a nonlinearity parameter, which is calculated from the resonant frequency shift of ultrasonic wave related to the medium state, and the result is also closely related to the stress state of concrete. In this study, the nonlinearity parameter was measured with the change of tensile force to verify the close relationship between the two factors, and the effect of repetitive load cycle on the change of nonlinearity parameter was analyzed. In addition, sensitivity comparison with the linear ultrasonic pulse velocity method was performed. Through the experimental results, the possibility of NRUS technique for the evaluation of stress state in prestressed beam was confirmed.

Compensation Characteristics Dependence on Variation of Fiber Dispersion in WDM Systems with Optical Phase Conjugator (광 위상 공액기가 적용된 WDM 시스템에서 광섬유 분산 계수 변동에 따른 보상 특성)

  • 이성렬;박경호;정명래
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.5
    • /
    • pp.517-524
    • /
    • 2004
  • In this paper, we investigated the compensation characteristics of distorted NRZ format and RZ format signal dependence on dispersion variation of each transmission section in 8-channel WDM system. The WDM system have two transmission sections of unequal length with respect to optical phase conjugator(OPC) position. We select highly-nonlinear dispersion shifted fiber(HNL-DSF) as a nonlinear medium of OPC in order to convert wideband signal waves to conjugated waves. First, we confirmed that RZ is better than NRZ as a modulation format for maintenance or stable performance, when total dispersion or both sections in WDM system is different each other. Also, we confirmed that total dispersion of the short length section must be smaller than that of the long length section in order to excellently compensate for NRZ format signal.

Solitin Pulse Generation with Mode-Locked Erbium-Doped Fiber Laser Using Nonlinear Amplifying Loop Mirror (Nonlinear Amplifying Loop Mirror를 사용하여 모우드 록킹된 Erbium 첨가 광섬유 레이저에서 발생하는 솔리톤 펄스)

  • 박희갑;임경아
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.142-147
    • /
    • 1995
  • Soliton pulse outputs are generated with figure '8' type erbium-doped fiber laser mode-locked by using a fiber loop mirror. The fiber loop mirror consists of an erbium-doped fiber amplifier at the one end of the loop, and 504 m-long dispersion-shifted fiber as a nonlinear medium. By pumping with a $1.48{\mu}m$ wavelength laser diode and adjusting the polarization controllers inside the loop, soliton pulses are generated with 1574 nm center wavelength and 1.2 nm linewidth. The soliton pulses are found randomly spaced within the fundamental period corresponding to cavity round trip time. The autocorrelation trace shows that the pulse width is 2.4 ps, which is in good agreement with the theoretical prediction. The pulsewidth- bandwidth product is found to be 0.348 which means that the pulses are nearly transform-limited.imited.

  • PDF

Seismic response of 3D steel buildings with hybrid connections: PRC and FRC

  • Reyes-Salazar, Alfredo;Cervantes-Lugo, Jesus Alberto;Barraza, Arturo Lopez;Bojorquez, Eden;Bojorquez, Juan
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.113-139
    • /
    • 2016
  • The nonlinear seismic responses of steel buildings with perimeter moment resisting frames (PMRF) and interior gravity frames (IGF) are estimated, modeling the interior connections first as perfectly pinned (PPC), and then as partially restrained (PRC). Two 3D steel building models, twenty strong motions and three levels of the PRC rigidity, which are represented by the Richard Model and the Beam Line Theory, are considered. The RUAUMOKO Computer Program is used for the required time history nonlinear dynamic analysis. The responses can be significantly reduced when interior connections are considered as PRC, confirming what observed in experimental investigations. The reduction significantly varies with the strong motion, story, model, structural deformation, response parameter, and location of the structural element. The reduction is larger for global than for local response parameters; average reductions larger than 30% are observed for shears and displacements while they are about 20% for bending moments. The reduction is much larger for medium- than for low-rise buildings indicating a considerable influence of the structural complexity. It can be concluded that, the effect of the dissipated energy at PRC should not be neglected. Even for connections with relative small stiffness, which are usually idealized as PPC, the reduction can be significant. Thus, PRC can be used at IGF of steel buildings with PMRF to get more economical construction, to reduce the seismic response and to make steel building more seismic load tolerant. Much more research is needed to consider other aspects of the problem to reach more general conclusions.

Calculation of Pump Light Power in Wideband Optical Phase Conjugator with Highly-Nonlinear Dispersion Shifted fiber (HNL-DSF를 이용한 광대역 광 위상 공액기의 펌프 광 전력 계산)

  • 이성렬;이하철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5A
    • /
    • pp.473-483
    • /
    • 2004
  • In this paper, we numerically investigated the optimum pump light power best compensating for pulse distortion due to both chromatic dispersion and self phase modulation (SPM) as a function of channel input power in 8 channel ${\times}$ 40 Gbps wavelength division multiplexing (WDM systems. Also we investigated the allowable maximum channel input power dependence on modulation format and fiber dispersion coefficient in the various pump light power of OPC. The considered WDM transmission system is based on path-averaged intensity approximation (PAIA) mid-span spectral inversion (MSSI) compensation method, which has highly-nonlinear dispersion shifted fiber (HNL-SDF) as nonlinear medium of optical phase conjugator (OPC) in the mid-way of total transmission line. We confirmed that optimal pump light power of HNL-DSF OPC depend on modulation format, initial channel input power, total transmission length and fiber dispersion. But optimal pump light power of HNL-DSF OPC must be selected to make power conversion ratio to almost unity. And we confirmed that, if we allow a 1 dB eye opening penalty (EOP), the tolerable maximum channel input power is increased by using RZ than NRZ as modulation format when pump light power of HNL-DSF OPC is not optimal value but another values.

Inelastic Behavior of Steel Frames with Buckling Restrained Braced (비좌굴가새가 설치된 골조의 비탄성거동)

  • Kim Jin-Koo;Park Jun-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.97-104
    • /
    • 2005
  • The seismic behavior of framed structure with Chevron-type bucking restrained braces were investigated and their behavior factors were evaluated following the procedure proposed in ATC-19 & ATC-34. Two types of structures, building frame systems and dual systems, with 4, 8, 12, and 16 stories were designed per the IBC 2000, the AISC LRFD and the AISC/SEAOC Recommended Provisions for BRBF. Nonlinear static pushover analyses were carried out to observe the plastic hinge formation and to identify the loads and the displacements at the yield and the ultimate states. Time history analyses were also carried out to compute the permanent displacement md the dissipated hysteretic energy. According to the analysis results, the response modification factors of model structures fumed out to be larger than what is proposed in the provision in low story structures, and a little smaller in medium-story structures. The dual systems, even though designed with smaller seismic load, showed superior static and dynamic performances.

  • PDF

Concentric Core Fiber Design for Optical Fiber Communication

  • Nadeem, Iram;Choi, Dong-You
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.3
    • /
    • pp.163-170
    • /
    • 2016
  • Because of rapid technological advancements, increased data rate support has become the key criterion for future communication medium selection. Multimode optical fibers and multicore optical fibers are well matched to high data rate throughput requirements because of their tendency to support multiple modes through one core at a time, which results in higher data rates. Using the numerical mode solver OptiFiber, we have designed a concentric core fiber by investigating certain design parameters, namely core diameter (µm), wavelength (nm), and refractive index profile, and as a result, the number of channels, material losses, bending losses, polarization mode dispersion, and the effective nonlinear refractive index have been determined. Space division multiplexing is a promising future technology that uses few-mode fibers in parallel to form a multicore fiber. The experimental tests are conducted using the standard second window wavelength of 1,550 nm and simulated results are presented.