• 제목/요약/키워드: nonlinear materials

검색결과 922건 처리시간 0.027초

비선형성을 고려한 탄성 다공성 재질의 음향학적 모델링 (Nonlinear Acoustical Modeling of Poroelastic Materials)

  • 김진섭;이수일;강영준
    • 소음진동
    • /
    • 제9권6호
    • /
    • pp.1218-1226
    • /
    • 1999
  • In this paper, the extended Biot's semilinear model was developed. Combining the extended Biot model with the dynamic equation yields the nonlinear wave equation in poproelastic sound absorbing materials. Both perturbation and matching techniques are used to find solutions for nonlinear wave equations. By comparing results between linear and nonlinear wave solutions, characteristics of nonlinear waves in poroelastic sound abosrbing materials have been studied. Nonlinear waves were found to be attenuated faster than the linear ones. A maximum amplitude of the nonlinear wave occurred near its surface boundaries and decay quickly with distance from the surface. It has also been found that, if the amplitudes of linear waves are known at the surface boundaries, those of nonlinear ones can be determined. This will be the basis of finding effects of nonlinearity on the absorption coefficient and the transmission loss.

  • PDF

Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load

  • Do, Quang Chan;Pham, Dinh Nguyen;Vu, Dinh Quang;Vu, Thi Thuy Anh;Nguyen, Dinh Duc
    • Steel and Composite Structures
    • /
    • 제31권3호
    • /
    • pp.243-259
    • /
    • 2019
  • This study deals with the nonlinear static analysis of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) truncated conical shells subjected to axial load based on the classical shell theory. Detailed studies for both nonlinear buckling and post-buckling behavior of truncated conical shells. The truncated conical shells are reinforced by single-walled carbon nanotubes which alter according to linear functions of the shell thickness. The nonlinear equations are solved by both the Airy stress function and Galerkin method based on the classical shell theory. In numerical results, the influences of various types of distribution and volume fractions of carbon nanotubes, geometrical parameters, elastic foundations on the nonlinear buckling and post-buckling behavior of FG-CNTRC truncated conical shells are presented. The proposed results are validated by comparing with other authors.

콘크리트 구조물의 비선형해석을 위한 재료모델 비교연구 (A Study on the Stress-Strain Relationships for Nonlinear Analysis of Concrete Structures)

  • 오병환;김영진;이형준;홍기중;박승진;임선택
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.65-70
    • /
    • 1994
  • Reinforced concrete and prestressed concrete structures consist of different materials, namely concrete, reinforcing steel and/or prestressing steel. Reinforcing and prestressing steels can be considered homogeneous materials, and their properties are generally well defined. Howefer, concrete is a heterogeous materials, and it is difficult to define its properties accurately. Both concrete and steel exhibit various nonlinear materials properties. The stress-strain relationship of concrete is not only nonlinear, but it differs in compression and tension. And, tensile cracking is one of the most importnat factors which contribute to the nonlinear behavior of reinforced concrete structrures. In this strudy, the various stress-strain relationships of concrete and reinforcing steel in nonlinear analysis of RC and PC structures are examined.

  • PDF

신장률 변화에 따른 초탄성 재료의 비선형 재료모델 비교 연구 (Comparative Study on the Nonlinear Material Model of HyperElastic Material Due to Variations in the Stretch Ratio)

  • 이강수;기민석;박병재
    • 한국해양공학회지
    • /
    • 제32권4호
    • /
    • pp.253-260
    • /
    • 2018
  • Recently, the application of non-steel materials in ships and offshore plants is increasing because of the development of various nonlinear materials and the improvement of performance. Especially, hyper-elastic materials, which have a nonlinear stress-strain relationship, are used mainly in marine plant structures or ships where impact relaxation, vibration suppression, and elasticity are required, while elasticity must be maintained, even under high strain conditions. In order to simulate and evaluate the behavior of the hyperelastic material, it is very important to select an appropriate material model according to the strain of the material. This study focused on the selection of material models for hyperelastic materials, such as rubber used in the marine and offshore fields. Tension and compression tests and finite element simulations were conducted to compare the accuracy of the nonlinear material models due to variations in the stretch ratio of hyper-elastic material. Material coefficients of nonlinear material models are determined based on the curve fitting of experimental data. The results of this study can be used to improve the reliability of nonlinear material models according to stretch ratio variation.

Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities

  • Kumar, H.S. Naveen;Kattimani, Subhaschandra
    • Structural Engineering and Mechanics
    • /
    • 제82권4호
    • /
    • pp.477-490
    • /
    • 2022
  • This article investigates the nonlinear behavior of two-directional functionally graded materials (TDFGM) doubly curved panels with porosities for the first time. An improved and effectual approach is established based on the improved first-order shear deformation shell theory (IFSDST) and von Karman's type nonlinearity. The IFSDST considers the effects of shear deformation without the need for a shear correction factor. The composition of TDFGM constitutes four different materials, and the modified power-law function is employed to vary the material properties continuously in both thickness and longitudinal directions. A nonlinear finite element method in conjunction with Hamilton's principle is used to obtain the governing equations. Then, the direct iterative method is incorporated to accomplish the numerical results using the frequency-amplitude, nonlinear central deflection relations. Finally, the influence of volume fraction grading indices, porosity distributions, porosity volume, curvature ratio, thickness ratio, and aspect ratio provides a thorough insight into the linear and nonlinear responses of the porous curved panels. Meanwhile, this study emphasizes the influence of the volume fraction gradation profiles in conjunction with the various material and geometrical parameters on the linear frequency, nonlinear frequency, and deflection of the TDFGM porous shells. The numerical analysis reveals that the frequencies and nonlinear deformations can be significantly regulated by changing the volume fraction gradation profiles in a specified direction with an appropriate combination of materials. Hence, TDFGM panels can overcome the drawbacks of the functionally graded materials with a gradation of properties in a single direction.

적층된 ACM 경사판의 기하학적 비선형 동적 해석 (Geometrical nonlinear dynamic analysis of laminated skew plates made of advanced composite materials)

  • 이상열;장석윤
    • 복합신소재구조학회 논문집
    • /
    • 제1권4호
    • /
    • pp.28-34
    • /
    • 2010
  • W e performed a geometrical nonlinear dynamic analysis of laminated skew plates made of advanced composite materials (ACM ) based on the first-order shear deformation plate theory (FSDT). The Newmark method and Newton-Raphson iteration are used for the nonlinear dynamic solution. The effects of skew angles and layup sequences on the nonlinear dynamic response for various parameters are studied using a nonlinear dynamic finite element program developed for this study. The several numerical results were in good agreement with those reported by other investigators for square composite and skew plates, and the new results reported in this paper show the significant interactions between the skew angle and layup sequence in the skew laminate. Key observation points are discussed and a brief design guideline is given.

  • PDF

Characterization of Nonlinear Behaviors of CSCNT/Carbon Fiber-Reinforced Epoxy Laminates

  • Yokozeki, Tomohiro;Iwahori, Yutaka;Ishibashi, Masaru;Yanagisawa, Takashi
    • Advanced Composite Materials
    • /
    • 제18권3호
    • /
    • pp.251-264
    • /
    • 2009
  • Nonlinear mechanical behaviors of unidirectional carbon fiber-reinforced plastic (CFRP) laminates using cup-stacked carbon nanotubes (CSCNTs) dispersed epoxy are evaluated and compared with those of CFRP laminates without CSCNTs. Off-axis compression tests are performed to obtain the stress-strain relations. One-parameter plasticity model is applied to characterize the nonlinear response of unidirectional laminates, and nonlinear behaviors of laminates with and without CSCNTs are compared. Clear improvement in stiffness of off-axis specimens by using CSCNTs is demonstrated, which is considered to contribute the enhancement of the longitudinal compressive strength of unidirectional laminates and compressive strength of multidirectional laminates. Finally, longitudinal compressive strengths are predicted based on a kink band model including the nonlinear responses in order to demonstrate the improvement in longitudinal strength of CFRP by dispersing CSCNTs.

Robust Adaptive Output Feedback Control for Nonlinear Systems with Higher Order Relative Degree

  • Michino, Ryuji;Mizumoto, Ikuro;Tao, Yuichi;Iwai, Zenta;Kumon, Makoto
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.78-83
    • /
    • 2003
  • In this paper, it is dealt with a controller design problem for nonlinear systems with higher order relative degree. A robust adaptive control for uncertain nonlinear systems with stable zero dynamics will be proposed based on the high-gain adaptive output feedback and backstepping strategies. The proposed method is useful in the case where only the output signal is available.

  • PDF

강유전체의 비선형 거동에 대한 1차원 모델링 (One-Dimensional Modeling For Nonlinear Behavior of Ferroelectric Materials)

  • 김상주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1378-1383
    • /
    • 2003
  • A ferroelectric (called piezoelectric afterwards) wafer has been widely used as a key component of actuators or sensors of a layer type. According to recent researches, the piezoelectric wafer behaves in a nonlinear way under excessive electro-mechanical loadings. In the present paper, one-dimensional constitutive equations for the nonlinear behavior of a piezoelectric wafer are proposed based on the principles of thermodynamics and a simple viscoplasticity theory. The predictions of the developed model are compared with experimental observations.

  • PDF

Nonlinear vibration analysis of FG porous shear deformable cylindrical shells covered by CNTs-reinforced nanocomposite layers considering neutral surface exact position

  • Zhihui Liu;Kejun Zhu;Xue Wen;Abhinav Kumar
    • Advances in nano research
    • /
    • 제17권1호
    • /
    • pp.61-73
    • /
    • 2024
  • This paper presents nonlinear vibration analysis of a composite cylindrical shell. The core of the shell is made of functionally graded (FG) porous materials and layers is fabricated of carbon nanotubes (CNTs) reinforced nanocomposites. To increase the accuracy of results, neutral surface position is considered. First-order shear deformation theory is used as displacement field to derive the basic relations of equation motions. In addition, von-Karman nonlinear strains are employed to account geometric nonlinearity and to enhance the results' precision, the exact position of the neutral surface is considered. To governing the partial equations of motion, the Hamilton's principle is used. To reduce the equation motions into a nonlinear motion equation, the Galerkin's approach is employed. After that the nonlinear motion equation is solved by multiple scales method. Effect of various parameters such as volume fraction and distribution of CNTs along the thickness directions, different patterns and efficiency coefficients of porous materials, geometric characteristics and initial conditions on nonlinear to linear ratio of frequency is investigated.