Journal of the Earthquake Engineering Society of Korea
/
v.10
no.3
s.49
/
pp.77-84
/
2006
Unlike homogeneous material structure, the behavior of masonry structure is not perfectly elastic even in the range of small deformations because it is a non-homogeneous and anisotropic composite structural material, consisting of masonry units, mortar, and grout. This paper proposes a simplified way of investigating the evolution of the deformation and damage of the structure subjected to a series of successive ground motions with varying shaking. Especially, the most simple but useful algorithm of Fast Fourier Transformation (FFT) has been adopted to investigate the evolution of the deformation and damage of the structure tested on the shaking table. Moreover, the development of a hi-linear curve for an equivalent SDOF system which is obtained by exploiting the frequency and stiffness relationship was discussed. Finally, some important findings related to inelastic properties of the URM are summarized.
A finite element (FE) model for analyzing slender reinforced high-strength concrete (HSC) columns under biaxial eccentric loading is formulated in terms of the Euler-Bernoulli theory. The cross section of columns is divided into discrete concrete and reinforcing steel fibers so as to account for varied material properties over the section. The interaction between axial and bending fields is introduced in the FE formulation so as to take the large-displacement or P-delta effects into consideration. The proposed model aims to be simple, user-friendly, and capable of simulating the full-range inelastic behavior of reinforced HSC slender columns. The nonlinear model is calibrated against the experimental data for slender column specimens available in the technical literature. By using the proposed model, a numerical study is carried out on pin-ended slender HSC square columns under axial compression and biaxial bending, with investigation variables including the load eccentricity and eccentricity angle. The calibrated model is expected to provide a valuable tool for more efficiently designing HSC columns.
A method that determines the minimum stiffness of baracing to achieve non-sway buckling conditions at a given story level of a multi-column elastic frame is proposed. Condensed equations that evaluate the required minimum stiffness of the lateral and torsional bracing are derived using the classical stability functions. The proposed method is applicable to elastic framed structures with rigid, semirigid, and simple connections. It is shown that the minimum stiffness of the bracing required by a multi-column system depends on: 1) the plan layout of the columns; 2) the variation in height and cross sectional properties among the columns; 3) the applied axial load pattern on the columns; 4) the lack of symmetry in the loading pattern, column layout, column sizes and heights that cause torsion-sway and its effects on the flexural bucking capacity; and 5) the flexural and torsional end restrains of the columns. The proposed method is limited to elastic framed structures with columns of doubly symmetrical cross section with their principal axes parallel to the global axes. However, it can be applied to inelastic structures when the nonlinear behavior is concentrated at the end connections. The effects of axial deformations in beams and columns are neglected. Three examples are presented in detail to show the effectiveness of the proposed method.
Han, Sang Whan;Hyun, Jungho;Cho, EunSeon;Lee, Kihak
Steel and Composite Structures
/
v.42
no.5
/
pp.657-669
/
2022
Structural materials can experience large plastic deformation under extreme cyclic loading that is caused by events like earthquakes. To evaluate the seismic safety of a structure, accurate numerical material models should be used. For a steel structure, the cyclic strain hardening behavior of structural steel should be correctly modeled. In this study, a combined hardening model, consisting of one isotropic hardening model and three nonlinear kinematic hardening models, was used. To determine the values of the combined hardening model parameters efficiently and accurately, the improved opposition-based particle swarm optimization (iOPSO) model was adopted. Low-cycle fatigue tests were conducted for three steel grades commonly used in Korea and their modeling parameters were determined using iOPSO, which was first developed in Korea. To avoid expensive and complex low cycle fatigue (LCF) tests for determining the combined hardening model parameter values for structural steel, empirical equations were proposed for each of the combined hardening model parameters based on the LCF test data of 21 steel grades collected from this study. In these equations, only the properties obtained from the monotonic tensile tests are required as input variables.
KSCE Journal of Civil and Environmental Engineering Research
/
v.33
no.1
/
pp.81-92
/
2013
The ultimate flexural strength of HSB I-girders, considering the effect of local bucking, was investigated through a series of nonlinear finite element analysis. The girders were selected such that the inelastic local flange buckling or the plastic yielding of compression flanges governs the flexural strength. Both homogeneous sections fabricated from HSB600 or HSB800 steel and hybrid sections with HSB800 flanges and SM570-TMC web were considered. In the FE analysis, the flanges and web were modeled using thin shell elements and initial imperfections and residual stresses were imposed on the FE model. An elasto-plastic strain hardening material was used for steels. After establishing the validity of present FE analysis by comparing FE results with test results published in the literature, the effects of initial imperfection and residual stress on the inelastic flange local buckling behavior were assessed. The ultimate flexural strengths of 60 I-girders with various compression flange slenderness were obtained by FE analysis and compared with those calculated from the KHBDC, AASHTO LRFD and Eurocode 3 provisions. Based on the comparison, the applicability of design equations in these specifications for the flexural strength of I-girder considering flange local buckling was evaluated.
KSCE Journal of Civil and Environmental Engineering Research
/
v.29
no.2A
/
pp.119-130
/
2009
Seismic fragility curves of a structure represent the probability of exceeding the prescribed structural damage state for a given various levels of ground motion intensity such as peak ground acceleration (PGA), spectral acceleration ($S_a$) and spectral displacement ($S_d$). So those are very essential to evaluate the structural seismic performance and seismic risk. The purpose of this paper is to develop seismic fragility curves for PSC box girder bridges. In order to construct numerical fragility curve of bridge structure using nonlinear time history analysis, a set of ground motions corresponding to design spectrum are artificially generated. Assuming a lognormal distribution, the fragility curve is estimated by using the methodology proposed by Shinozuka et al. PGA is simple and generally used parameter in fragility curve as ground motion intensity. However, the PGA has not good relationship with the inelastic structural behavior. So, $S_a$ and $S_d$ with more direct relationship for structural damage are used in fragility analysis as more useful intensity measures instead of PGA. The numerical fragility curves based on nonlinear time history analysis are compared with those obtained from simple method suggested in HAZUS program.
The cyclic behavior and energy dissipation mechanism of short coupling beams with various reinforcement layouts were studied. For numerical analysis of coupling beams, nonlinear truss model was used. The results of numerical analysis showed that the coupling beams with conventional reinforcement layout showed pinched cyclic behavior without significant energy dissipation, whereas the coupling beams with diagonal reinforcement exhibited stable cyclic behavior without pinching. The energy dissipation of the coupling beams was developed mainly by diagonal reinforcing bars developing large plastic strains rather than concrete which is a brittle material Based on this result, simplified equations for evaluating the energy dissipation of coupling beams were developed. For verification, the predicted energy dissipation was compared with the test results. The results showed that the simplified equations can predict the energy dissipation of short coupling beams with shear span-to-depth ratio less than 1.25 with reasonable precision, addressing various design parameters such as reinforcement layout, shear span-to-depth ratio, and the magnitude of inelastic displacement. The proposed energy equations can be easily applied to performance-based seismic evaluation and design of reinforced concrete structures and members.
KSCE Journal of Civil and Environmental Engineering Research
/
v.11
no.1
/
pp.79-87
/
1991
An efficient numerical procedure for material and geometric nonlinear analysis of reinforced concrete shells under monotonically increasing loads through their elastic, inelastic and ultimate load ranges is developed by using the finite element method. The 8-node Serendipity isoparametric element developed by the degeneration approach including the transverse shear deformation is used. A layered approach is used to represent the steel reinforcement and to discretize the concrete behavior through the thickness. The total Lagrangian formulation based upon the simplified Von Karman strain expressions is used to take into account the geometric nonlinearity of the structure. The material nonlinearities are taken into account by comprising the tension, compression, and shear models of cracked concrete and a model for reinforcement in the concrete; and also a so-called smeared crack model is incorporated. The steel reinforcement is assumed to be in a uniaxial stress state and is modelled as a smeared layer of equivalent thickness. This method will be verified a useful tool to account for geometric and material nonlinearities in detailed analysis of reinforced concrete concrete shells of general form through numerical examples of the sequential paper( ).
Journal of the Earthquake Engineering Society of Korea
/
v.10
no.5
s.51
/
pp.11-23
/
2006
This paper evaluates the seismic response of multi-span prestressed concrete girder bridges typically found in the New Madrid Seismic Zone region of the central United States. Using detailed nonlinear analytical models and synthetic ground motion records for Memphis, TN, nonlinear response history analyses are performed for two levels of ground motion: 10% probability of exceedance (PE) in 50 years, and 2% probability of exceedance (PE) in 50 years. The results show that the bridge performance is very good fur the 10% PE in 50 years ground motion level. However, the performance for the 2% PE in 50 years ground motion is not so good because it results in highly inelastic behavior of the bridge. Impact between decks results in large ductility demands on the columns, and failure of the bearings that support the girders. It is found that making the superstructure continuous, which is commonly performed for reducing dead load moments and maintenance requirements, results in significant improvement in the seismic response of prestressed concrete girder bridges.
KSCE Journal of Civil and Environmental Engineering Research
/
v.13
no.5
/
pp.99-107
/
1993
In this study, material nonlinear finite element program is developed to analyze reinforced concrete shell of arbitrary geometry considering tension stiffening effects. This study is capable of tracing the load-deformation response and crack propagation, as well as determining the internal concrete and steel stresses through the elastic, inelastic and ultimate ranges in one continuous computer analysis. The cracked shear retention factor is introduced to estimate the effective shear modulus including aggregate interlock and dowel action. The concrete is assumed to be brittle in tension and elasto-plastic in compression. The Drucker-Prager yield criterion and the associated flow rule are adopted to govern the plastic behavior of the concrete. The reinforcing bars are considered as a steel layer of equivalent thickness. A layered isoparametric flat finite element considering the coupling effect between the in-plane and the bending action was developed. Mindlin plate theory taking account of transverse shear deformation was used. An incremental tangential stiffness method is used to obtain a numerical solution. Numerical examples about reinforced concrete shell are presented. Validity of this method is studied by comparing with the experimential results of Hedgren and the numerical analysis of Lin.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.