• Title/Summary/Keyword: nonlinear global analysis

Search Result 274, Processing Time 0.03 seconds

Numerical analysis on the behaviour of reinforced concrete frame structures in fire

  • Dzolev, Igor M.;Cvetkovska, Meri J.;Ladinovic, Dorde Z.;Radonjanin, Vlastimir S.
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.637-647
    • /
    • 2018
  • Numerical approach using finite element method has been used to evaluate the behaviour of reinforced concrete frame structure subjected to fire. The structure is previously designed in accordance with Eurocode standards for the design of structures for earthquake resistance, for the ductility class M. Thermal and structural response are obtained using a commercially available software ANSYS. Temperature-dependent nonlinear thermal and mechanical properties are adopted according to Eurocode standards, with the application of constitutive model for the triaxial behaviour of concrete with a smeared crack approach. Discrete modelling of concrete and reinforcement has enabled monitoring of the behaviour at a global, as well as at a local level, providing information on the level of damage occurring during fire. Critical regions in frame structures are identified and assessed, based on temperatures, displacements, variations of internal forces magnitudes and achieved plastic deformations of main reinforcement bars. Parametric analyses are conducted for different fire scenarios and different types of concrete aggregate to determine their effect on global deformations of frame structures. According to analyses results, the three-dimensional finite element model can be used to evaluate the insulation and mechanical resistance criteria of reinforced concrete frame structures subjected to nominal fire curves.

Behavior of Members in the Unit Model of Steel-Concrete Hybrid Deck for Bridges (교량용 강ㆍ콘크리트 합성 바닥판 단위모델의 부재별 거동 특성)

  • 정광회;정연주;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.493-498
    • /
    • 2003
  • The 3D nonlinear analysis for steel-concrete hybrid deck is carried out by utilizing 2D plane interface element. The effect of the slip occurred between steel and concrete can be modeled by this element. This analysis focuses on not only global behavior of steel-concrete hybrid deck but also local behaviors of members of it such as lower steel plate, I-beam, and concrete which are varied by slip modulus. In this analysis, it was founded that the limit slip modulus could classify the states of steel-concrete hybrid deck into three parts such as full-composite, partial-composite, and non-composite, considering the behavior of lower steel plate, I-beam, and concrete at the mid span and the support as well as the yield load and ultimate load of it.

  • PDF

Crashworthiness Analysis of railway Rolling Stock (철도차량 충돌 안전성 분석)

  • 이강욱;백운천;박상규
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.393-400
    • /
    • 1998
  • In this study, the crash situations and general crash analysis methods of railway rolling stocks were explained. To calculate the applied load and the maximum stress in the carbody when two aluminum railway vehicles were shunted, the finite element models for the carbody and the coupling system were made. The characteristic curve of draft gear which had a function to reduce impact force was modeled by nonlinear bar elements and the carbody was modeled by shell elements. Two shunting speeds, 5km/h and 8km/h, were considered and the results were analyzed and compared with static analysis case. Also, the aluminum railway vehicle with 60km/h was crashed against rigid wall to examine the global behavior of the carbody.

  • PDF

Seismic Response Analysis of Lightly Reinforced Concrete Shear Walls

  • Rhee, In-Kyu
    • International Journal of Railway
    • /
    • v.3 no.2
    • /
    • pp.73-82
    • /
    • 2010
  • Global and local behaviors of a lightly RC shear walls are investigated in this paper. For the sake of cyclic behaviors, nominal ground accelerations of 0.15 g, 0.40 g and 0.55 g which associated with natural periods of the walls are applied as listed in French CAMUS-2000 shake table test. Modified Kent & Park model, Drucker-Prager model for concrete material and $Giufr\acute{e}$-Menegotto-Pinto model for rebar are used for time history analyses using fiber/solids elements respectively. Alternatively, Eulerian beam analysis are discussed by imposing inelastic hinges at the most possible plastic hinge location using modified Takeda's trilinear model with stiffness reduction. Relative displacements, base shears, bending moments of 5-story shear building with 36-tons of mass under bi-lateral seismic excitation are extracted and compared with EC-8, PS-92 and KBC-09 provisions. Multi-scaled degradation process; material damage, elemental fracture and structural failure in turn is discussed in the view of numerical accuracy, efficiency and limitation depending on three different model-based analyses.

  • PDF

Modeling of composite MRFs with CFT columns and WF beams

  • Herrera, Ricardo A.;Muhummud, Teerawut;Ricles, James M.;Sause, Richard
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.327-340
    • /
    • 2022
  • A vast amount of experimental and analytical research has been conducted related to the seismic behavior and performance of concrete filled steel tubular (CFT) columns. This research has resulted in a wealth of information on the component behavior. However, analytical and experimental data for structural systems with CFT columns is limited, and the well-known behavior of steel or concrete structures is assumed valid for designing these systems. This paper presents the development of an analytical model for nonlinear analysis of composite moment resisting frame (CFT-MRF) systems with CFT columns and steel wide-flange (WF) beams under seismic loading. The model integrates component models for steel WF beams, CFT columns, connections between CFT columns and WF beams, and CFT panel zones. These component models account for nonlinear behavior due to steel yielding and local buckling in the beams and columns, concrete cracking and crushing in the columns, and yielding of panel zones and connections. Component tests were used to validate the component models. The model for a CFT-MRF considers second order geometric effects from the gravity load bearing system using a lean-on column. The experimental results from the testing of a four-story CFT-MRF test structure are used as a benchmark to validate the modeling procedure. An analytical model of the test structure was created using the modeling procedure and imposed-displacement analyses were used to reproduce the tests with the analytical model of the test structure. Good agreement was found at the global and local level. The model reproduced reasonably well the story shear-story drift response as well as the column, beam and connection moment-rotation response, but overpredicted the inelastic deformation of the panel zone.

Seismic response of complex 3D steel buildings with welded and post-tensioned connections

  • Reyes-Salazar, Alfredo;Ruiz, Sonia E.;Bojorquez, Eden;Bojorquez, Juan;Llanes-Tizoc, Mario D.
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.217-243
    • /
    • 2016
  • The linear and nonlinear seismic responses of steel buildings with perimeter moment resisting frames and welded connections (WC) are estimated and compared with those of buildings with post-tensioned connections (PC). Two-dimensional (2D) and three-dimensional (3D) structural representations of the buildings as well as global and local response parameters are considered. The seismic responses and structural damage of steel buildings with PC may be significantly smaller than those of the buildings with typical WC. The reasons for this are that the PC buildings dissipate more hysteretic energy and attract smaller inertia forces. The response reduction is larger for global than for local response parameters. The reduction may significantly vary from one structural representation to another. One of the main reasons for this is that the energy dissipation characteristics are quite different for the 2D and 3D models. In addition, in the case of the 3D models, the contribution of each horizontal component to the axial load on an specific column may be in phase each other during some intervals of time, but for some others they may be out of phase. It is not possible to observe this effect on the 2D structural formulation. The implication of this is that 3D structural representation should be used while estimating the effect of the PC on the structural response. Thus, steel frames with post-tensioned bolted connections are a viable option in high seismicity areas due to the fact that brittle failure is prevented and also because of their reduced response and self-centering capacity.

Seismic damage assessment of a large concrete gravity dam

  • Lounis Guechari;Abdelghani Seghir;Ouassila Kada;Abdelhamid Becheur
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.125-134
    • /
    • 2023
  • In the present work, a new global damage index is proposed for the seismic performance and failure analysis of concrete gravity dams. Unlike the existing indices of concrete structures, this index doesn't need scaling with an ultimate or an upper value. For this purpose, the Beni-Haroun dam in north-eastern Algeria, is considered as a case study, for which an average seismic capacity curve is first evaluated by performing several incremental dynamic analyses. The seismic performance point of the dam is then determined using the N2 method, considering multiple modes and taking into account the stiffness degradation. The seismic demand is obtained from the design spectrum of the Algerian seismic regulations. A series of recorded and artificial accelerograms are used as dynamic loads to evaluate the nonlinear responses of the dam. The nonlinear behaviour of the concrete mass is modelled by using continuum damage mechanics, where material damage is represented by a scalar field damage variable. This modelling, which is suitable for cyclic loading, uses only a single damage parameter to describe the stiffness degradation of the concrete. The hydrodynamic and the sediment pressures are included in the analyses. The obtained results show that the proposed damage index faithfully describes the successive brittle failures of the dam which increase with increasing applied ground accelerations. It is found that minor damage can occur for ground accelerations less than 0.3 g, and complete failure can be caused by accelerations greater than 0.45 g.

Progressive Collapse Resisting Capacity of Building Structures with Infill Steel Panels (강판벽이 설치된 건물의 연쇄붕괴 저항성능)

  • Lee, Ha-Na;Kwon, Kwang-Ho;Kim, Jin-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • In this study the progressive collapse behavior of a moment frame with infill steel panels is evaluated using nonlinear static pushdown analysis. The analysis model is a two story two span structure designed only for gravity load, and the load-displacement relationship is obtained with the center column removed. To obtain local stress and strain as well as the global structural behavior, finite element analysis is conducted using ABACUS. Through the analysis the effect of the span length and the thickness of the steel plate on the progressive collapse behavior of the structure is investigated, and the effect of the dividing the infill panel using stud columns is also studied. According to the analysis results, the thickness of the panels required to prevent progressive collapse increases as the span length increases, and as the number of panel division increases the progressive collapse resisting capacity increases slightly but the effect is not significant. It is also observed that when the infill panel is installed in only a part of the span the progressive collapse resisting capacity is somewhat increased.

Whole-working history analysis of seismic performance state of rocking wall moment frame structures based on plastic hinge evolution

  • Xing Su;Shi Yan;Tao Wang;Yuefeng Gao
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.175-189
    • /
    • 2024
  • Aiming at studying the plastic hinge (PH) evolution regularities and failure mode of rocking wall moment frame (RWMF) structure in earthquakes, the whole-working history analysis of seismic performance state of RWMF structure based on co-operation performance and PH evolution was carried out. Building upon the theoretical analysis of the elastic internal forces and deformations of RWMF structures, nonlinear finite element analysis (FEA) methods were employed to perform both Pushover analysis and seismic response time history analysis under different seismic coefficients (δ). The relationships among PH occurrence ratios (Rph), inter-story drifts and δ were established. Based on the plotted curve of the seismic performance states, evaluation limits for the Rph and inter-story drifts were provided for different performance states of RWMF structures. The results indicate that the Rph of RWMF structures exhibits a nonlinear evolution trend of "fast at first, then slow" with the increasing of δ. The general pattern is characterized by the initial development of beam hinges in the middle stories, followed by the development towards the top and bottom stories until the beam hinges are fully formed. Subsequently, the development of column hinges shifts from the bottom and top stories towards the middle stories of the structure, ultimately leading to the loss of seismic lateral capacity with a failure mode of partial beam yield, demonstrating a global yielding pattern. Moreover, the limits for the Rph and inter-story drifts effectively evaluate the five different performance states of RWMF structures.

Effects of Nonlinear Motions due to Abutment-Soil Interaction upon Seismic Responses of Multi-Span Simply Supported Bridges (비선형 교대운동이 교량구조물의 지진응답에 미치는 영향분석)

  • 김상효;마호성;이상우;경규혁
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.17-24
    • /
    • 2002
  • Dynamic behaviors of a bridge system with several simple spans are evaluated to examine the effects of nonlinear abutment motions upon the seismic responses of the bridge. The idealized mechanical model for the whole bridge system is developed by adopting the multi-degree-of-freedom system, which can consider various influential components. To compare the results, both linear and nonlinear abutment-backfill models are prepared. The linear system has the constant abutment stiffness, and the nonlinear system has the nonlinear stiffness considering the abutment stiffness degradation due to the abutment-soil interaction. From simulation results, the nonlinear abutment motion is found to have an important influence upon the global bridge motions. Maximum relative distances between adjacent vibration units are found to be larger than those found from the linear system. In particular, maximum relative distances at the location with the highest possibility of unseating failure are increased up to about 30% in the nonlinear system. The effects of nonlinear behavior of an abutment on the bridge seismic behaviors are also increased as the number of span increase. Therefore, it can be concluded that the abutment-soil interaction should be considered in the seismic analysis of the bridge system.