• 제목/요약/키워드: nonlinear forecasting models

검색결과 53건 처리시간 0.028초

Forecasting of Daily Inflows Based on Regressive Neural Networks

  • Shin, Hyun-Suk;Kim, Tae-Woong;Kim, Joong-Hoon
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2001년도 학술발표회 논문집(I)
    • /
    • pp.45-51
    • /
    • 2001
  • The daily inflow is apparently one of nonlinear and complicated phenomena. The nonlinear and complexity make it difficult to model the prediction of daily flow, but attractive to try the neural networks approach which contains inherently nonlinear schemes. The study focuses on developing the forecasting models of daily inflows to a large dam site using neural networks. In order to reduce the error caused by high or low outliers, the back propagation algorithm which is one of neural network structures is modified by combining a regression algorithm. The study indicates that continuous forecasting of a reservoir inflow in real time is possible through the use of modified neural network models. The positive effect of the modification using tole regression scheme in BP algorithm is showed in the low and high ends of inflows.

  • PDF

Fuzzy GMDH-type Model and Its Application to Financial Demand Forecasting for the Educational Expenses

  • Hwang, Heung-Suk;Seo, Mi-Young
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2007년도 추계학술대회 및 정기총회
    • /
    • pp.183-189
    • /
    • 2007
  • In this paper, we developed the fuzzy group method data handling-type (GMDH) Model and applied it to demand forecasting of educational expenses. At present, GMDH family of modeling algorithms discovers the structure of empirical models and it gives only the way to get the most accurate identification and demand forecasts in case of noised and short input sampling. In distinction to fuzzy system, the results are explicit mathematical models, obtained in a relative short time. In this paper, an adaptive learning network is proposed as a kind of fuzzy GMDH. The proposed method can be reinterpreted as a multi-stage fuzzy decision rule which is called as the fuzzy GMDH. The fuzzy GMDH-type networks have several advantages compared with conventional multi-layered GMDH models. Therefore, many types of nonlinear systems can be automatically modeled by using the fuzzy GMDH. A computer program is developed and successful applications are shown in the field of demand forecasting problem of educational expenses with the number of factors considered.

  • PDF

Nonlinearities and Forecasting in the Economic Time Series

  • Lee, Woo-Rhee
    • Communications for Statistical Applications and Methods
    • /
    • 제10권3호
    • /
    • pp.931-954
    • /
    • 2003
  • It is widely recognized that economic time series involved not only the linearities but also the non-linearities. In this paper, when the economic time series data have the nonlinear characteristics we propose the forecasts method using combinations of both forecasts from linear and nonlinear models. In empirical study, we compare the forecasting performance of 4 exchange rates models(AR, GARCH, AR+GARCH, Bilinear model) and combination of these forecasts for dairly Won/Dollar exchange rates returns. The combination method is selected by the estimated individual forecast errors using Monte Carlo simulations. And this study shows that the combined forecasts using unrestricted least squares method is performed substantially better than any other combined forecasts or individual forecasts.

시계열 모형을 이용한 통신망 트래픽 예측 기법연구 (Time Series Models for Performance Evaluation of Network Traffic Forecasting)

  • 김삼용
    • 응용통계연구
    • /
    • 제20권2호
    • /
    • pp.219-227
    • /
    • 2007
  • 시계열 모형은 통신망 트래픽의 예측과 분석에 유용하게 쓰여 왔다. 본 논문에서는 통신망 트래픽의 예측을 위하여 다양한 시계열 모형을 소개하고 성능평가를 하고자 한다. 이를 위하여 실제 통신망 트래픽 자료에 선형 및 비선형 시계열모형을 적합 시키고 비선형 시계열모형이 선형 시계열 모형보다 예측의 정확도가 우수함을 보이고자 한다.

An Empirical Analysis of Sino-Russia Foreign Trade Turnover Time Series: Based on EMD-LSTM Model

  • GUO, Jian;WU, Kai Kun;YE, Lyu;CHENG, Shi Chao;LIU, Wen Jing;YANG, Jing Ying
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권10호
    • /
    • pp.159-168
    • /
    • 2022
  • The time series of foreign trade turnover is complex and variable and contains linear and nonlinear information. This paper proposes preprocessing the dataset by the EMD algorithm and combining the linear prediction advantage of the SARIMA model with the nonlinear prediction advantage of the EMD-LSTM model to construct the SARIMA-EMD-LSTM hybrid model by the weight assignment method. The forecast performance of the single models is compared with that of the hybrid models by using MAPE and RMSE metrics. Furthermore, it is confirmed that the weight assignment approach can benefit from the hybrid models. The results show that the SARIMA model can capture the fluctuation pattern of the time series, but it cannot effectively predict the sudden drop in foreign trade turnover caused by special reasons and has the lowest accuracy in long-term forecasting. The EMD-LSTM model successfully resolves the hysteresis phenomenon and has the highest forecast accuracy of all models, with a MAPE of 7.4304%. Therefore, it can be effectively used to forecast the Sino-Russia foreign trade turnover time series post-epidemic. Hybrid models cannot take advantage of SARIMA linear and LSTM nonlinear forecasting, so weight assignment is not the best method to construct hybrid models.

추계학적 비선형 모형을 이용한 달천의 실시간 수질예측 (Real Time Water Quality Forecasting at Dalchun Using Nonlinear Stochastic Model)

  • 연인성;조용진;김건흥
    • 상하수도학회지
    • /
    • 제19권6호
    • /
    • pp.738-748
    • /
    • 2005
  • Considering pollution source is transferred by discharge, it is very important to analyze the correlation between discharge and water quality. And temperature also influent to the water quality. In this paper, it is used water quality data that was measured DO (Dissolved Oxygen), TOC (Total Organic Carbon), TN (Total Nitrogen), TP (Total Phosphorus) at Dalchun real time monitoring stations in Namhan river. These characteristics were analyzed with the water quality of rainy and nonrainy periods. Input data of the water quality forecasting models that they were constructed by neural network and neuro-fuzzy was chosen as the reasonable data, and water quality forecasting models were applied. LMNN (Levenberg-Marquardt Neural Network), MDNN (MoDular Neural Network), and ANFIS (Adaptive Neuro-Fuzzy Inference System) models have achieved the highest overall accuracy of TOC data. LMNN and MDNN model which are applied for DO, TN, TP forecasting shows better results than ANFIS. MDNN model shows the lowest estimation error when using daily time, which is qualitative data trained with quantitative data. If some data has periodical properties, it seems effective using qualitative data to forecast.

Robustness of Learning Systems Subject to Noise:Case study in forecasting chaos

  • Kim, Steven H.;Lee, Churl-Min;Oh, Heung-Sik
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1997년도 추계학술대회발표논문집; 홍익대학교, 서울; 1 Nov. 1997
    • /
    • pp.181-184
    • /
    • 1997
  • Practical applications of learning systems usually involve complex domains exhibiting nonlinear behavior and dilution by noise. Consequently, an intelligent system must be able to adapt to nonlinear processes as well as probabilistic phenomena. An important class of application for a knowledge based systems in prediction: forecasting the future trajectory of a process as well as the consequences of any decision made by e system. This paper examines the robustness of data mining tools under varying levels of noise while predicting nonlinear processes in the form of chaotic behavior. The evaluated models include the perceptron neural network using backpropagation (BPN), the recurrent neural network (RNN) and case based reasoning (CBR). The concepts are crystallized through a case study in predicting a Henon process in the presence of various patterns of noise.

  • PDF

일 유량 자료의 카오스 특성 및 예측 (Analysis of Chaos Characterization and Forecasting of Daily Streamflow)

  • 왕원준;유영훈;이명진;배영해;김형수
    • 한국습지학회지
    • /
    • 제21권3호
    • /
    • pp.236-243
    • /
    • 2019
  • 현재까지 많은 수문 시계열은 전통적인 선형 모형을 이용하여 분석되고 예측되어 왔다. 하지만, 자연현상과 수문시계열의 패턴 및 변동과 관련하여 비선형적 구조의 증거가 발견되고 있다. 따라서 시계열 분석 및 예측을 위한 기존의 선형 모형은 비선형적 특성에 적합하지 않을 수 있다. 본 연구에서는 미국 플로리다 코코아 지역 인근에 있는 St.Johns 강의 일유량 자료에 대한 카오스 분석을 수행하였고, 그 결과 낮은 차원의 비선형 동역학적 특성을 가진 흥미로운 결과가 나타났지만 한국의 소양강댐 일유량 자료는 확률적 특성을 보여주었다. 카오스 특성을 토대로한 DVS(결정론적 vs 추계학적) 알고리즘을 이용해 두 시계열 시스템의 특성을 파악하였고 단기 예측을 수행하였다. 또한 본 연구에서는 일 유량 시계열 예측을 위해 인공신경망 방법을 사용하였고, DVS 알고리즘에 의한 예측을 비교 분석하였다. 분석 결과, 카오스 특성을 갖는 시계열 자료가 보다 정확한 예측성을 보였다.

항만물동량 예측력 제고를 위한 ARIMA 및 인공신경망모형들의 비교 연구 (A Study on Application of ARIMA and Neural Networks for Time Series Forecasting of Port Traffic)

  • 신창훈;정수현
    • 한국항해항만학회지
    • /
    • 제35권1호
    • /
    • pp.83-91
    • /
    • 2011
  • 예측의 정확성은 비용의 감소나 고객서비스의 제고를 위해 필수적으로 선행되어야 하기에 현재까지도 많은 연구자들에 의해 연구되고 있는 분야이다. 본 연구에서는 국내 항만의 컨테이너 물동량 예측에 있어 대표적인 비선형예측모형인 인공신경망모형과 ARIMA모형에 대한 비교연구를 수행하는데 목적을 두었고, 컨테이너 물동량 예측력 제고를 위해 ARIMA모형과 인공신경망(ANN)모형을 결합한 하이브리드모형을 사용해 다른 모형들과 예측성과를 비교하고자 한다. 특히 인공신경망모형의 네트워크 구조 설계에 부분에 있어 방대하며 복잡한 탐색공간에서도 전역해 찾기에 효과적인 기법으로 알려져 있는 유전알고리즘을 사용함과 동시에 인공신경망의 대표적인 모형으로 알려진 다층 퍼셉트론(MLP)뿐만 아니라 시간지연네트워크(TDNN)를 사용해 예측성과를 비교하였다. 그 결과 ANN모형과 하이브리드모형이 ARIMA모형보다 더 뛰어난 예측성과를 보이는 것으로 나왔다.

뉴로 - 퍼지 GMDH 모델 및 이의 이동통신 예측문제에의 응용 (Neuro-Fuzzy GMDH Model and Its Application to Forecasting of Mobile Communication)

  • 황흥석
    • 산업공학
    • /
    • 제16권spc호
    • /
    • pp.28-32
    • /
    • 2003
  • In this paper, the fuzzy group method data handling-type(GMDH) neural networks and their application to the forecasting of mobile communication system are described. At present, GMDH family of modeling algorithms discovers the structure of empirical models and it gives only the way to get the most accurate identification and demand forecasts in case of noised and short input sampling. In distinction to neural networks, the results are explicit mathematical models, obtained in a relative short time. In this paper, an adaptive learning network is proposed as a kind of neuro-fuzzy GMDH. The proposed method can be reinterpreted as a multi-stage fuzzy decision rule which is called as the neuro-fuzzy GMDH. The GMDH-type neural networks have several advantages compared with conventional multi-layered GMDH models. Therefore, many types of nonlinear systems can be automatically modeled by using the neuro-fuzzy GMDH. The computer program is developed and successful applications are shown in the field of estimating problem of mobile communication with the number of factors considered.