The daily inflow is apparently one of nonlinear and complicated phenomena. The nonlinear and complexity make it difficult to model the prediction of daily flow, but attractive to try the neural networks approach which contains inherently nonlinear schemes. The study focuses on developing the forecasting models of daily inflows to a large dam site using neural networks. In order to reduce the error caused by high or low outliers, the back propagation algorithm which is one of neural network structures is modified by combining a regression algorithm. The study indicates that continuous forecasting of a reservoir inflow in real time is possible through the use of modified neural network models. The positive effect of the modification using tole regression scheme in BP algorithm is showed in the low and high ends of inflows.
In this paper, we developed the fuzzy group method data handling-type (GMDH) Model and applied it to demand forecasting of educational expenses. At present, GMDH family of modeling algorithms discovers the structure of empirical models and it gives only the way to get the most accurate identification and demand forecasts in case of noised and short input sampling. In distinction to fuzzy system, the results are explicit mathematical models, obtained in a relative short time. In this paper, an adaptive learning network is proposed as a kind of fuzzy GMDH. The proposed method can be reinterpreted as a multi-stage fuzzy decision rule which is called as the fuzzy GMDH. The fuzzy GMDH-type networks have several advantages compared with conventional multi-layered GMDH models. Therefore, many types of nonlinear systems can be automatically modeled by using the fuzzy GMDH. A computer program is developed and successful applications are shown in the field of demand forecasting problem of educational expenses with the number of factors considered.
Communications for Statistical Applications and Methods
/
제10권3호
/
pp.931-954
/
2003
It is widely recognized that economic time series involved not only the linearities but also the non-linearities. In this paper, when the economic time series data have the nonlinear characteristics we propose the forecasts method using combinations of both forecasts from linear and nonlinear models. In empirical study, we compare the forecasting performance of 4 exchange rates models(AR, GARCH, AR+GARCH, Bilinear model) and combination of these forecasts for dairly Won/Dollar exchange rates returns. The combination method is selected by the estimated individual forecast errors using Monte Carlo simulations. And this study shows that the combined forecasts using unrestricted least squares method is performed substantially better than any other combined forecasts or individual forecasts.
시계열 모형은 통신망 트래픽의 예측과 분석에 유용하게 쓰여 왔다. 본 논문에서는 통신망 트래픽의 예측을 위하여 다양한 시계열 모형을 소개하고 성능평가를 하고자 한다. 이를 위하여 실제 통신망 트래픽 자료에 선형 및 비선형 시계열모형을 적합 시키고 비선형 시계열모형이 선형 시계열 모형보다 예측의 정확도가 우수함을 보이고자 한다.
GUO, Jian;WU, Kai Kun;YE, Lyu;CHENG, Shi Chao;LIU, Wen Jing;YANG, Jing Ying
The Journal of Asian Finance, Economics and Business
/
제9권10호
/
pp.159-168
/
2022
The time series of foreign trade turnover is complex and variable and contains linear and nonlinear information. This paper proposes preprocessing the dataset by the EMD algorithm and combining the linear prediction advantage of the SARIMA model with the nonlinear prediction advantage of the EMD-LSTM model to construct the SARIMA-EMD-LSTM hybrid model by the weight assignment method. The forecast performance of the single models is compared with that of the hybrid models by using MAPE and RMSE metrics. Furthermore, it is confirmed that the weight assignment approach can benefit from the hybrid models. The results show that the SARIMA model can capture the fluctuation pattern of the time series, but it cannot effectively predict the sudden drop in foreign trade turnover caused by special reasons and has the lowest accuracy in long-term forecasting. The EMD-LSTM model successfully resolves the hysteresis phenomenon and has the highest forecast accuracy of all models, with a MAPE of 7.4304%. Therefore, it can be effectively used to forecast the Sino-Russia foreign trade turnover time series post-epidemic. Hybrid models cannot take advantage of SARIMA linear and LSTM nonlinear forecasting, so weight assignment is not the best method to construct hybrid models.
Considering pollution source is transferred by discharge, it is very important to analyze the correlation between discharge and water quality. And temperature also influent to the water quality. In this paper, it is used water quality data that was measured DO (Dissolved Oxygen), TOC (Total Organic Carbon), TN (Total Nitrogen), TP (Total Phosphorus) at Dalchun real time monitoring stations in Namhan river. These characteristics were analyzed with the water quality of rainy and nonrainy periods. Input data of the water quality forecasting models that they were constructed by neural network and neuro-fuzzy was chosen as the reasonable data, and water quality forecasting models were applied. LMNN (Levenberg-Marquardt Neural Network), MDNN (MoDular Neural Network), and ANFIS (Adaptive Neuro-Fuzzy Inference System) models have achieved the highest overall accuracy of TOC data. LMNN and MDNN model which are applied for DO, TN, TP forecasting shows better results than ANFIS. MDNN model shows the lowest estimation error when using daily time, which is qualitative data trained with quantitative data. If some data has periodical properties, it seems effective using qualitative data to forecast.
Practical applications of learning systems usually involve complex domains exhibiting nonlinear behavior and dilution by noise. Consequently, an intelligent system must be able to adapt to nonlinear processes as well as probabilistic phenomena. An important class of application for a knowledge based systems in prediction: forecasting the future trajectory of a process as well as the consequences of any decision made by e system. This paper examines the robustness of data mining tools under varying levels of noise while predicting nonlinear processes in the form of chaotic behavior. The evaluated models include the perceptron neural network using backpropagation (BPN), the recurrent neural network (RNN) and case based reasoning (CBR). The concepts are crystallized through a case study in predicting a Henon process in the presence of various patterns of noise.
현재까지 많은 수문 시계열은 전통적인 선형 모형을 이용하여 분석되고 예측되어 왔다. 하지만, 자연현상과 수문시계열의 패턴 및 변동과 관련하여 비선형적 구조의 증거가 발견되고 있다. 따라서 시계열 분석 및 예측을 위한 기존의 선형 모형은 비선형적 특성에 적합하지 않을 수 있다. 본 연구에서는 미국 플로리다 코코아 지역 인근에 있는 St.Johns 강의 일유량 자료에 대한 카오스 분석을 수행하였고, 그 결과 낮은 차원의 비선형 동역학적 특성을 가진 흥미로운 결과가 나타났지만 한국의 소양강댐 일유량 자료는 확률적 특성을 보여주었다. 카오스 특성을 토대로한 DVS(결정론적 vs 추계학적) 알고리즘을 이용해 두 시계열 시스템의 특성을 파악하였고 단기 예측을 수행하였다. 또한 본 연구에서는 일 유량 시계열 예측을 위해 인공신경망 방법을 사용하였고, DVS 알고리즘에 의한 예측을 비교 분석하였다. 분석 결과, 카오스 특성을 갖는 시계열 자료가 보다 정확한 예측성을 보였다.
예측의 정확성은 비용의 감소나 고객서비스의 제고를 위해 필수적으로 선행되어야 하기에 현재까지도 많은 연구자들에 의해 연구되고 있는 분야이다. 본 연구에서는 국내 항만의 컨테이너 물동량 예측에 있어 대표적인 비선형예측모형인 인공신경망모형과 ARIMA모형에 대한 비교연구를 수행하는데 목적을 두었고, 컨테이너 물동량 예측력 제고를 위해 ARIMA모형과 인공신경망(ANN)모형을 결합한 하이브리드모형을 사용해 다른 모형들과 예측성과를 비교하고자 한다. 특히 인공신경망모형의 네트워크 구조 설계에 부분에 있어 방대하며 복잡한 탐색공간에서도 전역해 찾기에 효과적인 기법으로 알려져 있는 유전알고리즘을 사용함과 동시에 인공신경망의 대표적인 모형으로 알려진 다층 퍼셉트론(MLP)뿐만 아니라 시간지연네트워크(TDNN)를 사용해 예측성과를 비교하였다. 그 결과 ANN모형과 하이브리드모형이 ARIMA모형보다 더 뛰어난 예측성과를 보이는 것으로 나왔다.
In this paper, the fuzzy group method data handling-type(GMDH) neural networks and their application to the forecasting of mobile communication system are described. At present, GMDH family of modeling algorithms discovers the structure of empirical models and it gives only the way to get the most accurate identification and demand forecasts in case of noised and short input sampling. In distinction to neural networks, the results are explicit mathematical models, obtained in a relative short time. In this paper, an adaptive learning network is proposed as a kind of neuro-fuzzy GMDH. The proposed method can be reinterpreted as a multi-stage fuzzy decision rule which is called as the neuro-fuzzy GMDH. The GMDH-type neural networks have several advantages compared with conventional multi-layered GMDH models. Therefore, many types of nonlinear systems can be automatically modeled by using the neuro-fuzzy GMDH. The computer program is developed and successful applications are shown in the field of estimating problem of mobile communication with the number of factors considered.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.