• Title/Summary/Keyword: nonlinear failure

Search Result 842, Processing Time 0.027 seconds

Improved Distribution of Lateral Seismic Forces for Evaluation of Inelastic Seismic Response of RC Irregular Building Structures (비정형 RC 건축구조물의 비선형 지진응답 평가를 위한 개선된 횡하중 분배 방법)

  • 최원호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.322-329
    • /
    • 2000
  • Current seismic design codes for building structures are based on the methods which can provide enough capacity to satisfy objected performance level and exactly evaluate the seismic performance of buildings. Pushover analysis of fast becoming an accepted method for the seismic evaluation of building structures. The popularity of this approximate, nonlinear static analysis method is due to its conceptual simplicity and ability to graphically describe a capacity and demand of structure. However, some of the shortcomings of the pushover analysis, especially for longer period and irregular buildings, is the inability of method to identify failure mechanisms due to effects of higher modes. In this paper proposed lateral load pattern which includes the contribution of higher modes of vibration for irregular building structure and compared to seismic response obtained by time history.

  • PDF

Transient Heat Transfer Analysis of Brake Drum Shape (브레이크 드럼의 형상에 따른 과도 열전달 해석)

  • Kim, Yang-Sul;An, Su-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.65-71
    • /
    • 2008
  • This paper presents a transient heat transfer analysis of a drum brake shape. The transient heat transfer analysis of automotive drum brakes with frictional contact is performed by using the finite element method. The drum brake type studied in the page is the internally expanding one in which two shoes fitted externally with frictional material are forced outward against surface a rotating drum on the wheel unit. In this case, the braking power is produced by the friction force between a drum and a lining, and is converted into heat. The brake drum has constant material properties. The air inside the drum has temperature-dependent thermal conductivity and enthalpy. Radiation effects are ignored. The result explains the reason why hair crack and cause of drum failure occur. The temperature of drum is in proportion to the drum thickness and nonlinear changes at every points of drum. It's necessary for the decrease of the drum temperature to make the air inside drum flow.

Third Order Sliding Mode Observer based Robust Fault Diagnosis for Robot Manipulators (3 계 슬라이딩 모드 관측기 기반 로봇 고장 진단)

  • Van, Mien;Kang, Hee-Jun;Suh, Young-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.669-672
    • /
    • 2012
  • This paper investigates an algorithm for robust fault diagnosis in robot manipulators. The TOSM (Third Order Sliding Mode observer) provides both theoretically exact observation and unknown fault identification without filtration. The EOI (Equivalent Output Injections) of the TOSM observers can be used as residuals for the problem of fault diagnosis and to identify the unknown faults. The obtained fault information can be used for fault detection, isolation as well as fault accommodation to the self-correcting failure system. The computer simulation results for a PUMA 560 robot are shown to verify the effectiveness of the proposed strategy.

Behavior of R/C cylindrical shell under lateral load

  • Hara, Takashi;Shigematsu, Tsunemi;Tamura, Takahiro
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.361-369
    • /
    • 2003
  • In this paper, the structural behavior of R/C cylindrical panel is analyzed by experimental results. To avoid the geometric imperfection, R/C shell specimens are made by use of a stiff steel mold. From experimental results, the load carrying behavior of R/C cylindrical panel is presented under an external lateral pressure. Even if R/C shell does not posses geometric imperfections, the inaccuracy of the reinforcement position strongly affects to the ultimate strength and the failure patterns of such shells. To explain these effects, FEM nonlinear analyses are done under the same conditions as those of experiments. The behavior of R/C cylindrical shells are well simulated under the consideration of both the geometric imperfection and several inaccuracies.

Modelling of recycled aggregate concrete-filled steel tube (RACFST) beam-columns subjected to cyclic loading

  • Yang, You-Fu
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.213-233
    • /
    • 2015
  • A nonlinear finite element analysis (FEA) model is presented for simulating the behaviour of recycled aggregate concrete-filled steel tube (RACFST) beam-columns subjected to constant axial compressive load and cyclically increasing flexural loading. The FEA model was developed based on ABAQUS software package and a displacement-based approach was used. The proposed engineering stress versus engineering strain relationship of core concrete with the effect of recycled coarse aggregate (RCA) replacement ratio was adopted in the FEA model. The predicted results of the FEA model were compared with the experimental results of several RACFST as well as the corresponding concrete-filled steel tube (CFST) beam-columns under cyclic loading reported in the literature. The comparison results indicated that the proposed FEA model was capable of predicting the load versus deformation relationship, lateral bearing capacity and failure pattern of RACFST beam-columns with an acceptable accuracy. A parametric study was further carried out to investigate the effect of typical parameters on the mechanism of RACFST beam-columns subjected to cyclic loading.

Constitutive Equation for Concrete using Anisotropic Continuum Damage Model (이방성 손상모델을 이용한 콘크리트 구성방정식의 도출)

  • Lee, Ki Seong;Byun, Keun Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.751-759
    • /
    • 1994
  • Concrete contains numerous microcracks initially. The growth and propagation of microcracks cause failure of concrete. These processings are termed as "damage". The concepts of the continuum damage mechanics are presented and the damage evolution law and constitutive equation are derived by using the Helmholz free energy and the dissipation potential by means of the thermodynamic principles. The constitutive equation includes the effects of elasticity, damage and plasticity of concrete. The proposed model successfully predicts the nonlinear behavior of concrete subject to monotonic uniaxial and biaxial loadings.

  • PDF

Nonlinear Analysis of Nuclear Containment Wall Element using Standard 8-node Solid Element (표준 8절점 고체요소를 이용한 원전 격납건물 벽체요소의 비선형해석)

  • Lee Hong-Pyo;Choun Young-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.151-158
    • /
    • 2005
  • For the safety analysis of large structures such as nuclear containment buildings, we conventionally prefer to use analytical approach using finite element method rather than empirical test. Therefor, this paper is mainly focused to develop low-order solid finite element model with the elasto-plastic material model for the safety analysis of nuclear containment building. Drucker-Prager failure criteria in uncracked concrete and maximum tensile stress criteria in cracked concrete are used to model the constitutive behavior of concrete. The concrete material model takes into account the aspects of tensile strain, compression strength reduction of concrete and shear transfer to improve the accuracy of the finite element analysis. Finally, numerical simulation to compare the performance of the developed model with experimental results is employed. The numerical results in this study agree very well with the experimental data.

  • PDF

Seismic Margin Analysis of Reinforced Concrete Pier Using Damage Model Proceedings (손상모형을 이용한 철근 콘크리트 교각의 지진여유도 해석)

  • 고현무;이지호;정우영;조호현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.220-227
    • /
    • 2002
  • This study introduces the fragility analysis method for the safety evaluation of reinforced concrete pier subject to earthquake. Damage probability is calculated instead of the failure probability from definition of the damage state in the fragility curve. Not only the damage model determined by the response of structure subject to earthquake, but also the plastic-damage model which can represent the local damage is applied to fragility analysis. The evaluation method of damage state by damage variable in global structure is defined by this procedure. This study introduces the fragility analysis method considering the features of nonlinear time history behavior of reinforced concrete element and the plastic behavior of materials. At last, This study gives one of the approach method for seismic margin evaluation with the result of fragility analysis to design seismic load.

  • PDF

Comparative Study on Evaluation of Inelastic Energy Absorption Capacity for Seismic Fragility Analysis of Structures (구조물의 지진취약도분석을 위한 비탄성에너지흡수능력의 평가 기법에 관한 비교 연구)

  • 조양희;조성국;박형기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.135-142
    • /
    • 2002
  • This paper introduces the technologies related to seismic resistance assessment of nuclear power plant structures by seismic fragility analysis(SFA). The inelastic energy absorption factor is considered in SFA to represent the effects due to the nonlinear behavior of structures and has a significant effect on the seismic fragility that is a probability of failure of structures by earthquake. Several practical methods to evaluate the inelastic energy absorption capacity of structures are investigated. The capacities determined by those methods are compared with each other. And an improved method that uses the inelastic demand capacity diagram is presented. Conclusively, some comments on each method for practical application are made.

  • PDF

Seismic lateral earth pressure analysis of retaining walls

  • Ismeik, Muhannad;Shaqour, Fathi
    • Geomechanics and Engineering
    • /
    • v.8 no.4
    • /
    • pp.523-540
    • /
    • 2015
  • Based on limit equilibrium principles, this study presents a theoretical derivation of a new analytical formulation for estimating magnitude and lateral earth pressure distribution on a retaining wall subjected to seismic loads. The proposed solution accounts for failure wedge inclination, unit weight and friction angle of backfill soil, wall roughness, and horizontal and vertical seismic ground accelerations. The current analysis predicts a nonlinear lateral earth pressure variation along the wall with and without seismic loads. A parametric study is conducted to examine the influence of various parameters on lateral earth pressure distribution. Findings reveal that lateral earth pressure increases with the increase of horizontal ground acceleration while it decreases with the increase of vertical ground acceleration. Compared to classical theory, the position of resultant lateral earth force is located at a higher distance from wall base which in turn has a direct impact on wall stability and economy. A numerical example is presented to illustrate the computations of lateral earth pressure distribution based on the suggested analytical method.