• Title/Summary/Keyword: nonlinear failure

Search Result 842, Processing Time 0.023 seconds

Calculation of overtopping discharge with time-dependent aspects of an embankment failure (시간에 따른 제방붕괴 양상을 고려한 월류량 산정)

  • Kim, Hyung-Jun;Kim, Jong-Ho;Jang, Won-Jae;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.69-78
    • /
    • 2007
  • In this study, a time-dependent aspect of an embankment failure is considered to simulate a flood inundation map and calculate overtopping discharge induced by an embankment failure. A numerical model has been developed by solving the two dimensional nonlinear shallow water equations with a finite volume method on unstructured grids. To analyze a Riemann problem, the HLLC approximate Riemann solver and the Weighted Averaged Flux method are employed by using a TVD limiter and the source term treatment is also employed by using the operator splitting method. Firstly, the numerical model is applied to a dam break problem and a sloping seawall. Obtained numerical results show good agreements with experimental data. Secondly, the model is applied to a flow induced by an embankment failure by assuming that the width and elevation of embankment are varied with time-dependent functions. As a result of the comparison with each numerical overtopping discharge, established flood inundation discharges in the previous studies are overestimated than the result of the present numerical model.

Damage Index Evaluation Based on Dissipated Energy of SCH 40 3-Inch Carbon Steel Pipe Elbows Under Cyclic Loading (주기적 하중을 받는 SCH 40 3-Inch 탄소강관엘보의 소산에너지 기반의 손상지수 평가)

  • Kim, Sung-Wan;Yun, Da-Woon;Jeon, Bub-Gyu;Kim, Seong-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.112-119
    • /
    • 2021
  • The failure mode of piping systems due to seismic loads is the low-cycle fatigue failure with ratcheting, and it was found that the element in which nonlinear behavior is concentrated and damage occurs is the elbow. In this study, to quantitatively express the failure criteria for a pipe elbow of SCH40 3-inch carbon steel under low-cycle fatigue, the limit state was defined as leakage, and the in-plane cyclic loading test was conducted. For the carbon steel pipe elbow, which is the vulnerable part to seismic load of piping systems, the damage index was represented using the moment-deformation angle relationship, and it was compared and analyzed with the damage index calculated using the force-displacement relationship. An attempt was made to quantitatively express the limit state of the carbon steel pipe elbow involving leakage using the damage index, which was based on the dissipated energy caused by repeated external forces.

Slab slenderness effect on the punching shear failure of heat-damaged reinforced concrete flat slabs with different opening configurations and flexural reinforcement areas

  • Rajai Z. Al-Rousan;Bara'a R. Alnemrawi
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.627-645
    • /
    • 2024
  • Punching shear is a brittle failure that occurs within the RC flat slabs where stresses are concentrated within small regions, resulting in a catastrophic and unfavorable progressive collapse. However, increasing the slab slenderness ratio is believed to significantly affect the slab's behavior by the induced strain values throughout the slab depth. This study examines the punching shear behavior of flat slabs by the nonlinear finite element analysis approach using ABAQUS software, where 72 models were investigated. The parametric study includes the effect of opening existence, opening-to-column ratio (O/C), temperature level, slenderness ratio (L/d), and flexural reinforcement rebar diameter. The behavior of the punching shear failure was fully examined under elevated temperatures which was not previously considered in detail along with the combined effect of the other sensitive parameters (opening size, slab slenderness, and reinforcement rebar size). It has been realized that increasing the slab slenderness has a major role in affecting the slab's structural behavior, besides the effect of the flexural reinforcement ratio. Reducing the slab's slenderness from 18.27 to 5.37 increased the cracking load by seven times for the slab without openings compared to nine times for the initial stiffness value. In addition, the toughness capacity is reduced up to 80% upon creating an opening, where the percentage is further increased by increasing the opening size by about an additional 10%. Finally, the ultimate deflection capacity of flat slabs with an opening is increased compared to the solid slab with the enhancement being increased for openings of larger size, larger depths, and higher exposure temperature.

Evaluation of Strength and Deformability of a Friction Material Based on True Triaxial Compression Tests (진삼축압축시험을 통한 마찰재료의 강도 및 변형 특성 평가)

  • Bae, Junbong;Um, Jeong-Gi;Jeong, Hoyoung
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.597-610
    • /
    • 2022
  • Knowledge of the failure behavior of friction materials considering their intermediate principal stress is related to an understanding of situations where these materials might be used: for example, the stability of deep-seated boreholes and fault slip analysis. This study designed equipment for physically implementing true triaxial compression and used it to assess specimens of plaster, a friction material. The material's mechanical behaviors are discussed based on the results. The applicability of the 3D failure criteria are also reviewed. The tested specimens were molded cuboids of width, length, and height 52, 52, and 104 mm, respectively. A total of 24 true triaxial compression tests were performed under various combinations of 𝜎3 and 𝜎2 conditions. Conventional uniaxial and triaxial compression tests were employed to estimate the mechanical properties of the plaster for use as parameters for 3D failure criteria. Examining the stress-strain relations of the plaster materials showed that a large difference between the intermediate principal stress and the minimum principal stress indicated strong brittle behavior. The mechanical behavior of the plaster used here reflects the change of intermediate principal stress. Nonlinear multiple regression analysis on the test data in the principal space showed that the modified Wiebols-Cook failure criterion and the modified Lade failure criterion were the most suitable 3D failure criteria for the tested plaster.

Numerical modelling of FRP strengthened RC beam-column joints

  • Mahini, Seyed S.;Ronagh, Hamid R.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.5
    • /
    • pp.649-665
    • /
    • 2009
  • This paper reports part of a comprehensive research study conducted at the University of Queensland on the ability of CFRP web-bonded systems in strengthening an exterior beam-column joint subjected to monotonic loads. One 1/2.2 scaled plain and four CFRP repaired/retrofitted joints subjected to monotonic loads were analysed using the nonlinear finite-element program ANSYS and the results were calibrated against experiments. The ANSYS model was employed in order to account for tension stiffening in concrete after cracking and a modified version of the Hognestad's model was used to model the concrete compressive strength. The stress-strain properties of main steel bars were modelled using multilinear isotropic hardening model and the FRPs were modelled as anisotropic materials. A perfect bond was assumed as nodes were shared between adjacent elements irrespective of their type. Good agreement between the numerical predictions and the experimental observation of the failure mechanisms for all specimens were observed. Closeness of these results proved that the numerical analysis can be used by design engineers for the analysis of web-bonded FRP strengthened beam-column joints with confidence.

Shear performance assessment of steel fiber reinforced-prestressed concrete members

  • Hwang, Jin-Ha;Lee, Deuck Hang;Park, Min Kook;Choi, Seung-Ho;Kim, Kang Su;Pan, Zuanfeng
    • Computers and Concrete
    • /
    • v.16 no.6
    • /
    • pp.825-846
    • /
    • 2015
  • In this study, shear tests on steel fiber reinforced-prestressed concrete (SFR-PSC) members were conducted with test parameters of the concrete compressive strength, the volume fraction of steel fibers, and the level of effective prestress. The SFR-PSC members showed higher shear strengths and stiffness after diagonal cracking compared to the conventional prestressed concrete (PSC) members without steel fibers. In addition, their shear deformational behavior was measured using the image-based non-contact displacement measurement system, which was then compared to the results of nonlinear finite element analyses (NLFEA). In the NLFEA proposed in this study, a bi-axial tensile behavior model, which can reflect the tensile behavior of the steel fiber-reinforced concrete (SFRC) in a simple manner, was introduced into the smeared crack truss model. The NLFEA model proposed in this study provided a good estimation of shear behavior of the SFRPSC members, such as the stiffness, strengths, and failure modes, reflecting the effect of the key influential factors.

Influence of infill panels on an irregular RC building designed according to seismic codes

  • Ercolino, Marianna;Ricci, Paolo;Magliulo, Gennaro;Verderame, Gerardo M.
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.261-291
    • /
    • 2016
  • This paper deals with the seismic assessment of a real RC frame building located in Italy, designed according to the current Italian seismic code. The first part of the paper deals with the calibration of the structural model of the investigated building. The results of an in-situ dynamic identification test are employed in a sensitivity and parametric study in order to find the best fit model in terms of frequencies and modal shapes. In the second part, the safety of the structure is evaluated by means of nonlinear static analyses, taking into account the results of the previous dynamic study. In order to investigate the influence of the infills on the seismic response of the structure, the nonlinear static analyses are performed both neglecting and taking into account the infill panels. The infill panels differently change the behavior of the structure in terms of strength and stiffness at different seismic intensity levels. The assessment study also verifies the absence of brittle failures in structural elements, which could be caused by either the local interaction with infills or the failure of the strength hierarchy.

Nonlinear finite element analysis of RC beams strengthened with CFRP strip against shear

  • Bulut, Nalan;Anil, Ozgur;Belgin, Cagatay M.
    • Computers and Concrete
    • /
    • v.8 no.6
    • /
    • pp.717-733
    • /
    • 2011
  • Strengthening of reinforced concrete (RC) members against shear that is one of the failure modes especially avoided by using carbon fiber reinforced polymer (CFRP) is widely used technique, which is studied at many experimental studies. However, conducting experimental studies are required more financial resources and laboratory facilities. In addition, along with financial resources, more time is needed in order to carry out comprehensive experimental studies. For these reasons, a verified finite element model that is tested with previous experimental studies can be used for reaching generalized results and investigating parameters that are not studied. For this purpose, previous experimental study results are used and "T" cross-sectioned RC beams strengthened with CFRP strips with insufficient shear strength are modeled by using ANSYS software. First, finite elements modeling of the previously tested RC beams are done, and then the computed results are compared with the experimental ones whether they are matched or not. As a result, the finite element model is verified. Later, analyses of the cases without any test results are done by using the verified model. Optimum CFRP strip spacing is determined with this verified finite element model, and compared with the experimental findings.

Confinement efficiency and size effect of FRP confined circular concrete columns

  • Yeh, Fang-Yao;Chang, Kuo-Chun
    • Structural Engineering and Mechanics
    • /
    • v.26 no.2
    • /
    • pp.127-150
    • /
    • 2007
  • The objective of this paper is to develop a finite element procedure for predicting the compressive strength and ultimate axial strain of Carbon Fiber Reinforced Plastics (CFRP) confined circular concrete columns and to study the effective parameters of confinement efficiency for helping design of CFRP retrofit technology. The behavior of concrete confined with CFRP is studied using the nonlinear finite element method. In this paper, effects of column size, CFRP volumetric ratio and plain concrete strength are studied. The confined concrete nonlinear constitutive relation, concrete failure criterion and stiffness reduction methodology after concrete cracking or crushing are adopted. First, the finite element model is verified by comparing the numerical solutions of confined concrete with experimental results. Then the effects of column size, CFRP volumetric ratio and plain concrete strength on the peak strength and ductility of the confined concrete are considered. The results of parametric study indicate that the normalized column axial strength increases with increasing CFRP volumetric ratio, but without size effect for columns with the same CFRP volumetric ratio. As the same, the increase in column ductility depends on CFRP volumetric ratio but without size effect for columns with the same CFRP volumetric ratio.

Strength and Initial Stiffness of Composite Beams with a Rectangular Web-Opening (직사각형 웨브 개구부를 가진 합성보의 강도와 초기강성도)

  • 김원기;박노웅;이승준
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.55-62
    • /
    • 1999
  • For the efficient performance of steel and composite building structures subjected to strong earthquake, one of current research investigates the cyclic behavior of open-web composite beams. Both experimental test and nonlinear FEM analysis demonstrate their behavior so ductile that four T-sections around the corners of rectangular web-opening develop plastic hinges prior to potential brittle failure at the beam end, i.e. at the column face. This research proposes simplified equations for determining strength and initial stiffness of composite beams with a rectangular web-opening, and compares its results with those of experimental test and nonlinear FEM analysis.

  • PDF