• Title/Summary/Keyword: nonlinear experiments

Search Result 951, Processing Time 0.026 seconds

Load balancing Direction strategies in star network configurations (스타형 컴퓨터 네트워크의 부하균형방향 정책)

  • Im, Gyeong-Su;Kim, Su-Jeong;Kim, Jong-Geun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.4
    • /
    • pp.427-437
    • /
    • 1994
  • Optimal static load balancing in star network configurations is considered. Three kinds of load balancing direction strategies are considered. First, a job arriving at the peripheral nodes may be processed either where it arrived(origin node) or transferred directly to central node Second, a job arriving at the central node may be processed there, or transferred to lightly loaded peripheral nodes. A nonlinear optimization problem is formulated. Using the optimal solution, an optimal load balancing algorithm is derived for the second load balancing strategy. Third a job arriving at the central node or a peripheral node may be processed either at origin node or transferred to another lightly loaded node (central or peripheral). A load balancing algorithm is derived for the third load balancing strategy. The effects of these three load balancing strategies are compared by numerical experiments. During the conduct of these in numerical experiments, several interesting phenomena were observed. The third load balancing strategy improved performance more than the first two other strategies. The second load balancing strategy, as a whole, resulted in only slightly improved performance. Finally, of the central node has larger processing power than the peripheral nodes, the first and third load balancing strategies produce equal performance improvement.

  • PDF

Nonlinear Explosion Analyses for Damage Assessments of Reinforced Concrete Structures (비선형 폭발해석에 의한 콘크리트 구조물의 손상도 평가)

  • Huh, Taik Nyung;Kim, Seong Yun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • In general, the large loads which are applied from explosion, impact, earthquake and wind at a short time caused the materials of structures to large deformations, rotations and strains locally. If such phenomena will be analyzed, hydrocodes which can be considered fluid-structure interaction under computational continuum mechanics are inevitably needed. Also, the explosion mechanism is so complicated, it is reasonable that the behaviors of structure are predicted through explosion analyses and experiment at the same time. But, unfortunately, it is true that explosion experiments are limited to huge cost, large experiment facilities and safety problems. Therefore, in this study, it is shown that the results of explosion analyses using the AUTODYN are agreed with those of existing explosion experiments for reinforced concrete slabs within reasonable error limits. And the explosion damage of the same reinforced concrete slab are assessed for quite different reinforcement arrangement spacings, concrete cover depths, and vertical reinforcements. From the explosion analyses, it is known that the more the ratio of slab thickness to reinforcement arrangement spacing is increased, and small-diameter reinforcements are used than large-diameter reinforcements on the same reinforcement ratio, and vertical reinforcements are used, the more the anti-knock capacities are improved.

Box-Wilson Experimental Design-based Optimal Design Method of High Strength Self Compacting Concrete (Box-willson 실험계획법 기반 고강도 자기충전형 콘크리트의 최적설계방법)

  • Do, Jeong-Yun;Kim, Doo-Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.92-103
    • /
    • 2015
  • Box-Wilson experimental design method, known as central composite design, is the design of any information-gathering exercises where variation is present. This method was devised to gather as much data as possible in spite of the low design cost. This method was employed to model the effect of mixing factors on several performances of 60 MPa high strength self compacting concrete and to numerically calculate the optimal mix proportion. The nonlinear relations between factors and responses of HSSCC were approximated in the form of second order polynomial equation. In order to characterize five performances like compressive strength, passing ability, segregation resistance, manufacturing cost and density depending on five factors like water-binder ratio, cement content, fine aggregate percentage, fly ash content and superplasticizer content, the experiments were made at the total 52 experimental points composed of 32 factorial points, 10 axial points and 10 center points. The study results showed that Box-Wilson experimental design was really effective in designing the experiments and analyzing the relation between factor and response.

FEA for RC Beams Partially Flexural Reinforced with CFRP Sheets (CFRP 시트로 부분 휨 보강된 철근콘크리트 보의 유한요소해석)

  • Kim, Kun-Soo;Park, Ki-Tae;Kim, Byeong Cheol;Kim, Jaehwan;Jung, Kyu-San
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.9-16
    • /
    • 2020
  • A CFRP sheet has been applied as a structural reinforcement in the field, and various studies are conducted to evaluate the effect of CFRP sheets on reinforced concrete. Although many experiments were performed from previous studies, there are still limitations to analyze structural behaviors with various parameters in experiments directly. This study shows the FEA on structural behaviors of RC beams reinforced with CFRP sheets using ABAQUS software. To simulate debonding failure of CFRP sheets which is a major failure mode of RC beam with CFRP sheets, a cohesive element was applied between the bottom surface of RC beam and CFRP sheets. Both quasi-static method and 2-D symmetric FE model technique were performed to solve nonlinear problems. Results obtained from the FE models show good agreements with experimental results. It was found that reinforcement level of CFRP sheets is closely related to structural behavior of reinforced concrete including maximum strength, initial stiffness and deflection at failure. Also, as over-reinforcement of CFRP sheets could give rise to the brittle failure of RCstructure using CFRP sheets, an appropriate measure should be required when installing CFRP sheets in the structure.

Numerical analysis of dam breaking problem using SPH (제체의 갑작스런 붕괴로 인한 충격파 수치해석 - SPH (Smoothed Particle Hydrodynamics)를 중심으로)

  • Cho, Yong Jun;Kim, Gweon Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.261-270
    • /
    • 2008
  • Even though there is a great deal of progress in a numerical method of high caliber like SPH, it is very rarely deployed in a water resources community. Despite the great stride in computing environment, depth averaged approach like a nonlinear shallow equation is still efficient tool for flood routing in large watershed, but it can give some misleading information like the inundation height of flood. In this rationale, we numerically simulate the flow into the dry channel, dry channel with an obstacle triggered by the collapse of a two dimensional water column using SPH (Smoothed Particle Hydrodynamics) in order to boost the application of numerical method of high caliber like SPH in a water resources community. As a most severe test of the robustness of SPH, we also carry out the simulation of the flow through a clearance into the wet channel driven by the rapid removal of a water gate. As a hydrodynamic model, we used the Navier-Stokes equation, a numerical integration of which was carried out using SPH. To verify the validity of newly proposed numerical model, we compare the numerically simulated flow with the others in the literature mainly from VOF and MAC, and hydraulic experiments by Martin and Moyce (1952), Koshizuka et al. (1995) and Janosi et al. (2004). It was shown that agreements between the numerical results in this study and hydraulic experiments are remarkable.

Tracking Control for Mobile Platform based on Dynamics (동역학을 기반으로 한 모바일플랫폼 궤적제어)

  • Lee, Min-Jung;Park, Jin-Hyun;Jin, Tae-Seok;Cha, Kyung-Hwan;Choi, Young-Kui
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.201-204
    • /
    • 2008
  • The mobile robot is known as a nonlinear system with constraints. The general tracking controller for the mobile platform has been divided into the kinematic and the dynamic controller. The reason of dividing controller is the constraints. We can get some information through some numerical experiments. When the reference linear and angular velocity were given, the stability of mobile robot without the kinematic controller depend on the start point of reference cart. Therefore this paper composed of two controller for solving tracking problem. The main controller is the dynamic controller which used generally such as the PID controller. And this paper adopts the auxiliary controller in order to compensate the difference of initial point between the reference cart and a mobile robot. Finally, the numerical experiment is performed in order to show the validity of our method.

  • PDF

Evaluation of Gusset Plate Connection Stiffness in Braced Frames (가새 골조에서 거싯 플레이트 연결부의 강성 평가)

  • Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.105-113
    • /
    • 2009
  • To improve braced frame performance, the connection strength, stiffness, and ductility must be directly considered in the frame design. The resistance of the connection must be designed to resist seismic loads and to help provide the required system ductility. In addition, the connection stiffness affects the dynamic response and the deformation demands on the structural members and connections. In this paper, current design models for gusset plate connections are reviewed and evaluated usingthe results of past experiments. Current models are still not sufficient to provide adequate connection design guidelines and the actual stress and strain states in the gusset plate are very nonlinear and highly complex. Design engineers want simple models with beam and column elements to make an approximate estimation of system and connection performance. The simplified design models are developed and evaluated to predict connection stiffness and system behavior. These models produce reasonably accurate and reliable estimation of connection stiffness.

Control of Inertially Stabilized Platform Using Disturbance Torque Estimation and Compensation (외란토크 추정 및 보상을 이용한 관성안정화 플랫폼의 제어)

  • Choi, Kyungjun;Won, Mooncheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In this study, we propose a control algorithm for Inertially Stabilized Platforms (ISP), which combines Disturbance Observer (DOB) with conventional proportional integral derivative (PID) control algorithm. A single axis ISP system was constructed using a direct drive motor. The joint friction was modeled as a nonlinear function of joint speed while the accuracy of the model was verified through experiments and simulation. In addition, various Q-filters, which have different orders and relative degrees of freedom (DOF), were implemented. The stability and performance of the ISP were compared through experimental study. The performance of the proposed PID-plus-DOB algorithm was compared with the experimental results of the conventional double loop PID control under artificial vehicle motion provided motion simulator with six DOF.

Application of Chaotic Analysis to Electroencephalography : Preliminary Study (혼돈 이론을 이용한 뇌파 분석에 대한 기초 연구)

  • Park, Hae Jeong;Park, Kwang Suk;Kwon, Jun Soo
    • Korean Journal of Biological Psychiatry
    • /
    • v.2 no.2
    • /
    • pp.257-265
    • /
    • 1995
  • The object of this study is to apply a chaotic signal analysis method to the EEG research, especially in the aspect of neuropsychiatry, and to get some inspection of the chaotic phenomena according to the brain sites and subjects. We have acquired 21 channel EEG data and one EOG according to the international 10-20 system and calculated the correlation dimension. The subject groups are schizophrenics, bipolar disorder, major depression and normal control. They were all awoke and eye-closed. We have found no distinctive features from our experiments except temporal regions have slightly higher correlation dimension. There is also no specific distinctions between groups. We conjecture that these results are mainly because the subjects were not well controlled. EEG dimension may change in accordance with to the age, sex, medication and the time data were selected to calculate. We have also considered some conditions for a better and more objective research of chaotic analysis to EEG research. Better conditioning and standardizing the calculation of correlation dimension is necessary for the application of the chaotic analysis to neuropsychiatry.

  • PDF

Classification of Music Data using Fuzzy c-Means with Divergence Kernel (분산커널 기반의 퍼지 c-평균을 이용한 음악 데이터의 장르 분류)

  • Park, Dong-Chul
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.3
    • /
    • pp.1-7
    • /
    • 2009
  • An approach for the classification of music genres using a Fuzzy c-Means(FcM) with divergence-based kernel is proposed and presented in this paper. The proposed model utilizes the mean and covariance information of feature vectors extracted from music data and modelled by Gaussian Probability Density Function (GPDF). Furthermore, since the classifier utilizes a kernel method that can convert a complicated nonlinear classification boundary to a simpler linear one, he classifier can improve its classification accuracy over conventional algorithms. Experiments and results on collected music data sets demonstrate hat the proposed classification scheme outperforms conventional algorithms including FcM and SOM 17.73%-21.84% on average in terms of classification accuracy.