• Title/Summary/Keyword: nonlinear experiments

Search Result 951, Processing Time 0.028 seconds

The Numerical Simulation of Muti-directional Wasves and Statistical Investigation (다방향파의 수치시뮬레이션 및 통계적 검토)

  • 송명재;조효제;이승건
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.114-120
    • /
    • 1993
  • Responses of marine vehicles and ocean structures in a seaway can be predicted by applying the probabilistic approach. When we consider a linear system, the responses in a random seaway can be evaluated through spectral analysis in the frequency domain. But when we treat nonlinear system in irregular waves, it is necessary to get time history of waves. In the previous study we introduced one-directional waves (long crested waves)as wave environment and carried out calculations and experiments in the waves. But the real sea in which marine vehicles and structures are operated has multi-directional waves (short crested waves). It is important to get a simulated random sea and analyse dynamic problems in the sea. We need entire sample function or probabillty density function to infer statistical value of random process. However if the process are ergodic process, we can get statistical values by analysis of one sample function. In this paper, we developed the simulation technique of multi-directional waves and proved that the time history given by this method keep ergodic characteristics by the statistical analysis.

  • PDF

A Fault Detection Method for Uncertain Continuous and Discrete-Time Systems (불확실한 연속형 및 이산형 시스템에서의 이상검출법)

  • Hwang, In-Koo;Kwon, Oh-Kyu
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.10
    • /
    • pp.60-67
    • /
    • 1990
  • This paper proposes a model-based fault detection method for linear/nonlinear system having modelling errors, nonlinearities and measurement noise. The system model is represented by the unified operator [5] in order to apply to both the continuous-time and discrete-time problems. The fault detection method suggested here accounts for the effects of noise, model mismatch and nonlinearities. Modelling errors are depicted by additive forms and the nominal model denominator is fixed via prior experiments in order to quantify the nucertainty bound on the parameter estima-tion. The least square method is used to estimate the numerator parameters of the nominal model. performance than traditional methods.

  • PDF

Crystal Plasticity Simulation of Ti-6Al-4V Under Fretting Fatigue (프레팅 피로를 받는 Ti-6Al-4V의 결정소성 시뮬레이션)

  • Goh Chung Hyun;Lee Kee Seok;Ko Jun Bin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.511-517
    • /
    • 2005
  • Fretting fatigue is often the root cause of the nucleation of cracks at attachments of structural components. Since fretting fatigue damage accumulation occurs over relatively small volumes, the subsurface cyclic plastic strain is expected to be rather non-uniformly distributed in polycrystalline materials. The scale of the cyclic plasticity and the damage process zones is often on the order of microstructure dimensions. Fretting damage analyses using cyclic crystal plasticity constitutive models have the potential to account for the influence of size, morphology, and crystallographic orientation of grains on fretting damage evolution. Two-dimensional plane strain simulations of fretting fatigue are performed using the cyclic properties of Ti-6Al-4V. The crystal plasticity simulations are compared to an initially isotropic $J_{2}$ theory with nonlinear kinematic hardening as well as to experiments. The influence of initially isotropic versus textured microstructure in the presence of crystallographic slip is studied.

A Study on the Film Boiling-Quenching Process of the Hot Surface for the Heat Treatment of Metals (1st Report, Cooling Curves and Transient Boiling Heat Transfer during the Quenching Process of Carbon Steel) (金屬熱處理를 위한 高溫面의 膜沸騰急冷却에 관한 硏究 (第1報, 炭素鋼 켄칭 過程의 冷却曲線과 過渡沸騰熱傳達))

  • Yun, Seok-Hun;Hong, Yeong-Pyo;Kim, Gyeong-Geun;Jeong, Dae-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.57-65
    • /
    • 1991
  • The quenching of steels by water is one of the important problems in engineering for the applications of heat treatment or continuous casting process, but the fundamental researches by the theoretical approaches have not been satisfactorily improved yet. The very rapid cooling problems by the thermal conduction including the latent heat of phase transformation in steel and the transient boiling heat transfer of water on the surface of the steel covering from $850^{\circ}C$ to $20^{\circ}C$ are the key problems of heat treatment. The present quenching experiments are performed for the cylindrical specimens of carbon steel, S45C of diameters (12-30). Nonlinear transient heat conduction and transient boiling heat transfer problem of water on the surface of specimens is analyzed by the numerical method of inverse heat conduction problem. The conditions for the calculation are that the initial temperature of specimens is $820^{\circ}C$ and the cooling water in bath are $20^{\circ}C$,$40^{\circ}C$,$60^{\circ}C$,$80^{\circ}C$,$95^{\circ}C$ with no agitation.

  • PDF

A Design Using Sensitivity Information (민감도 정보를 이용한 설계 방법)

  • Kim, Y.I.;Yi, J.W.;Park, G.J.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1248-1253
    • /
    • 2003
  • Sensitivity information has been used for linearization of nonlinear functions in optimization. Basically, sensitivity is a derivative of a function with respect to a design variable. Design sensitivity is repeatedly calculated in optimization. Since sensitivity calculation is extremely expensive, there are studies to directly use the sensitivity in the design process. When a small design change is required, an engineer makes design changes by considering the sensitivity information. Generally, the current process is performed one-by-one for design variables. Methods to exploit the sensitivity information are developed. When a designer wants to change multiple variables with some relationship, the directional derivative can be utilized. In this case, the first derivative can be calculated. Only small design changes can be made from the first derivatives. Orthogonal arrays can be used for moderate changes of multiple variables. Analysis of Variance is carried out to find out the regional influence of variables. A flow is developed for efficient use of the methods. The sensitivity information is calculated by finite difference method. Various examples are solved to evaluate the proposed algorithm.

  • PDF

NUMERICAL STUDY ON DROPLET SPREAD MOTION AFTER IMPINGEMENT ON THE WALL USING IMPROVED CIP METHOD (수정된 CIP방법을 이용한 벽면 충돌 후 액적의 퍼짐 현상에 대한 수치해석 연구)

  • Son, S.Y.;Ko, G.H.;Lee, S.H.;Ryou, H.S.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.25-31
    • /
    • 2010
  • Interface tracking of two phase is significant to analyze multi-phase phenomena. The VOF(Volume of Fluid) and level set are well known interface tracking method. However, they have limitations to solve compressible flow and incompressible flow at the same time. CIP(Cubic Interpolate Propagation) method is appropriate for considering compressible and incompressible flow at once by solving the governing equation which is divided up into advection and non-advection term. In this article, we analyze the droplet impingement according to various We number using improved CIP method which treats nonlinear term once more comparison with original CIP method. Furthermore, we compare spread radius after droplet impingement on the wall with the experimental data and original CIP method. The result using improved CIP method shows the better result of the experiments, comparison with result of original CIP method, and it reduces the mass conservation error which is generated in the numerical analysis comparison with original CIP method.

Postbuckling Compressive Strengths of Composite Laminated Cylindrical Panels (복합적층 원통판넬의 좌굴후 압축강도)

  • 권진희;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.958-966
    • /
    • 1994
  • The postbuckling compressive strengths of $[0/90/\pm\theta]_s$ composite laminated cylindrical panels with various fiber angles and width-to-length ratios are characterized by the nonlinear finite element method. For the iteration and load-increment along the postbuckling equilibrium path a modified arc-length method in which the effect of failure can be considered is introduced. In the progressive failure analysis the maximum stress criterion and complete unloading model are used. Present finite element results show good agreement with experiments for $[0_3/90]_s$ cylindrical panel and $[0/\pm45/90/]_s$ plate. The postbuckling compressive strength of $[0/90/\pm\theta]_s$ composite laminated cylindrical panel is independent of the initial buckling stress but high in the panel with large value of the bending stiffness in axial direction. In the several cylindrical panels, it is observed that the prebuckling compressive failures occur and result into the collapse before the buckling.

A Design Methodology and Software Development with Sensitivity Information (민감도 정보를 이용한 설계 방법 및 소프트웨어의 개발)

  • 김용일;이정욱;윤준용;박경진
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2092-2100
    • /
    • 2003
  • Sensitivity information has been used for linearization of nonlinear functions in optimization. Basically, sensitivity is a derivative of a function with respect to a design variable. Design sensitivity is repeatedly calculated in optimization. Since sensitivity calculation is extremely expensive, there are studies to directly use the sensitivity in the design process. When a small design change is required, an engineer makes design changes by considering the sensitivity information. Generally, the current process is performed one-by-one for design variables. Methods to exploit the sensitivity information are developed. When a designer wants to change multiple variables with some relationship, the directional derivative can be utilized. In this case, the first derivative can be calculated. Only small design changes can be made from the first derivatives. Orthogonal arrays can be used for moderate changes of multiple variables. Analysis of Variance is carried out to find out the regional influence of variables. A flow is developed for efficient use of the methods. A software system with the flow has been developed. The system can be easily interfaced with existing commercial systems through a file wrapping technique. The sensitivity information is calculated by finite difference method. Various examples are solved to evaluate the proposed algorithm and the software system.

Ablation of Cr Thin Film on Glass Using Ultrashort Pulse Laser (극초단펄스 레이저에 의한 크롬박막 미세가공)

  • 김재구;신보성;장원석;최지연;장정원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.620-623
    • /
    • 2003
  • The material processing by using ultrashort pulse laser, in recently, is actively applying into the micro machining and nano-machining technology since ultrashort pulse has so faster than the time which the electrons energy absorbing photon energy is transmitted to surrounding lattice-phonon that it has many advantages in point of machining. The micro machining of metallic thin film on the plain glass is widely used in the fields such as mask repairing for semiconductor, fabrication of photonic crystal, MEMS devices and data storage devices. Therefore, it is important to secure the machining technology of the sub-micron size. In this research, we set up the machining system by using ultrashort pulse laser and conduct on the Cr 200nm thin film ablation experiments of spot and line with the variables such as energy, pulse number, speed, and so on. And we observed the characteristics of surrounding heat-affected zone and by-products appeared in critical energy density and higher energy density through SEM, and also examined the machining features between in He gas atmosphere which make pulse change minimized by nonlinear effect and in the air. Finally, the pit size of 0.8${\mu}{\textrm}{m}$ diameter and the line width of 1${\mu}{\textrm}{m}$ could be obtained.

  • PDF

Optimal Tuning of a Ballscrew Driven Biaxial Servo System (외란관측기를 이용한 볼스크류 구동 2축 서보계의 최적튜닝)

  • Shin, Dong-Soo;Chung, Sung-Chong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.589-597
    • /
    • 2011
  • In this paper, optimal tuning of a cross-coupled controller linked with the feedforward controller and the disturbance observer is studied to improve contouring and tracking accuracy as well as robustness against disturbance. Previously developed integrated design and optimal tuning methods are applied for developing the robust tuning method. Strict mathematical modeling of the multivariable system is formulated as a state-space equation. Identification processes of the servomechanism are conducted for mechanical servo models. An optimal tuning problem to minimize both the contour error and settling time is formulated as a nonlinear constrained optimization problem including the relevant controller parameters of the servo control system. Constraints such as relative stability, robust stability and overshoot, etc. are considered for the optimization. To verify the effectiveness of the proposed optimal tuning procedure, linear and circular motion experiments are performed on the xy-table. Experimental results confirm the control performance and robustness despite the variation of parameters of the mechanical subsystems.