• Title/Summary/Keyword: nonlinear experiments

Search Result 951, Processing Time 0.027 seconds

Chromatic Dispersion Compensation via Mid-span Spectral Inversion with Periodically Poled $LiNbO_3$ Wavelength Converter at Low Pump Power

  • Kim, Min-Su;Ahn, Joon-Tae;Kim, Jong-Bae;Ju, Jung-Jin;Lee, Myung-Hyun
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.312-318
    • /
    • 2005
  • Mid-span spectral inversion (MSSI) has to utilize high optical pump power, for its operation principle is based on a nonlinear optical wavelength conversion. In this paper, a low pump-power operation of MSSI-based chromatic dispersion compensation (CDC) has been achieved successfully, for the first time to our knowledge, by introducing a noise pre-reduction scheme in cascaded wavelength conversions with periodically poled $LiNbO_3$ waveguides at a relatively low operation temperature. As preliminary studies, phase-matching properties and operation-temperature dependence of the wavelength converter (WC) were characterized. The WC pumped at 1549 nm exhibited a wide conversion bandwidth of 59 nm covering the entire C-band and a conversion efficiency of -23.6 dB at 11 dBm pump power. CDC experiments were implemented with 2.5 and 10 Gb/s transmission systems over 100 km single-mode fiber. Although it is well-known that the signal distortion due to chromatic dispersion is not critical at a 2.5 Gb/s transmission, the clear recovery of eye patterns was identified. At 10 Gb/s transmission experiments, eye patterns were retrieved distinctly from seriously distorted ones, and notable improvements in bit-error rates were acquired at a low pump power of 14 dBm.

  • PDF

Optimization of Chassis Frame by Using D-Optimal Response Surface Model (D-Optimal 반응표면모델에 의한 섀시 프레임 최적설치)

  • Lee, Gwang-Gi;Gu, Ja-Gyeom;Lee, Tae-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.894-900
    • /
    • 2000
  • Optimization of chassis frame is performed according to the minimization of eleven responses representing one total frame weight, three natural frequencies and seven strength limits of chassis frame that are analyzed by using each response surface model from D-optimal design of experiments. After each response surface model is constructed form D-optimal design and random orthogonal array, the main effect and sensitivity analyses are successfully carried out by using this approximated regression model and the optimal solutions are obtained by using a nonlinear programming method. The response surface models and the optimization algorithms are used together to obtain the optimal design of chassis frame. The eleven-polynomial response surface models of the thirteen frame members (design factors) are constructed by using D-optimal Design and the multi-disciplinary design optimization is also performed by applying dual response analysis.

A Study on the Large Deformation of Silicon Rubber Gasket with Hollow Circular Section (실리콘 중공 가스켓의 대변형에 관한 연구)

  • 이태원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.150-157
    • /
    • 2003
  • In this paper, the large deformation of hollow silicon rubber gasket is treated. The frictional contact occurs between groove and the outer part of hollow gasket, and the frictional self-contact exists in the inner parts of hollow gasket. The silicon rubber has the nonlinear elastic behavior and its material property is approximately incompressible. Hence, the stress analysis requires an existence of a strain energy function, which is usually defined in terms of invariants or stretch ratio such as generalized Mooney-Rivlin and Ogden model. Considering large compressive deformation and friction, Mooney-Rivlin 3rd model and Coulomb's friction model are assumed. The numerical analysis is obtained by the commercial finite element program MARC. But, due to large deformation, the elements degenerate in the inner parts of hollow gasket. This means that the analysis of subsequent increments is carried out with a very poor mesh. In order to continue the analysis with a sufficient accuracy, it is necessary to use new finite element modeling by remesh. Experiments are also performed to show the validity of present method. As a conclusion, numerical results by this research have good agreements with experiments.

Chloride diffusion in concrete associated with single, dual and multi cation types

  • Song, Zijian;Jiang, Linhua;Zhang, Ziming
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.53-66
    • /
    • 2016
  • Currently, most of the investigations on chloride diffusion were based on the experiments and simulations concerning single cation type chlorides. Chloride diffusion associated with dual or multi cation types was rarely studied. In this paper, several groups of diffusion experiments are conducted using chloride solutions containing single, dual and multi cation types. A multi-ionic model is also proposed to simulate the chloride diffusion behavior in the experimental tests. The MATLAB software is used to numerically solve the nonlinear PDEs in the multi-ionic model. The experimental and simulated results show that the chloride diffusion behavior associated with different cation types is significantly different. When the single cation type chlorides are adopted, it is found that the bound rates of chloride ions combined with divalent cations are greater than those combined with monovalent cations. When the dual/multi cation type chlorides are adopted, the chloride bound rates increase with the $Ca^{2+}/Mg^{2+}$ percentage in the source solutions. This evidence indicates that the divalent cations would markedly enhance the chloride binding capacity and reduce the chloride diffusivity. Moreover, on the basis of the analysis, it is also found that the complicated cation types in source solutions are beneficial to reducing the chloride diffusivity.

Real-time large-scale hybrid testing for seismic performance evaluation of smart structures

  • Mercan, Oya;Ricles, James;Sause, Richard;Marullo, Thomas
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.667-684
    • /
    • 2008
  • Numerous devices exist for reducing or eliminating seismic damage to structures. These include passive dampers, semi-active dampers, and active control devices. The performance of structural systems with these devices has often been evaluated using numerical simulations. Experiments on structural systems with these devices, particularly at large-scale, are lacking. This paper describes a real-time hybrid testing facility that has been developed at the Lehigh University NEES Equipment Site. The facility enables real-time large-scale experiments to be performed on structural systems with rate-dependent devices, thereby permitting a more complete evaluation of the seismic performance of the devices and their effectiveness in seismic hazard reduction. The hardware and integrated control architecture for hybrid testing developed at the facility are presented. An application involving the use of passive elastomeric dampers in a three story moment resisting frame subjected to earthquake ground motions is presented. The experiment focused on a test structure consisting of the damper and diagonal bracing, which was coupled to a nonlinear analytical model of the remaining part of the structure (i.e., the moment resisting frame). A tracking indictor is used to track the actuator ability to achieve the command displacement during a test, enabling the quality of the test results to be assessed. An extension of the testbed to the real-time hybrid testing of smart structures with semi-active dampers is described.

Flux Optimization Using Genetic Algorithms in Membrane Bioreactor

  • Kim Jung-Mo;Park Chul-Hwan;Kim Seung-Wook;Kim Sang-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.863-869
    • /
    • 2006
  • The behavior of submerged membrane bioreactor (SMBR) filtration systems utilizing rapid air backpulsing as a cleaning technique to remove reversible foulants was investigated using a genetic algorithm (GA). A customized genetic algorithm with suitable genetic operators was used to generate optimal time profiles. From experiments utilizing short and long periods of forward and reverse filtration, various experimental process parameters were determined. The GA indicated that the optimal values for the net flux fell between 263-270 LMH when the forward filtration time ($t_f$) was 30-37 s and the backward filtration time ($t_b$) was 0.19-0.27 s. The experimental data confirmed the optimal backpulse duration and frequency that maximized the net flux, which represented a four-fold improvement in 24-h backpulsing experiments compared with the absence of backpulsing. Consequently, the identification of a region of feasible parameters and nonlinear flux optimization were both successfully performed by the genetic algorithm, meaning the genetic algorithm-based optimization proved to be useful for solving SMBR flux optimization problems.

Experimental and Numerical Investigation of Sliding Response of Unconstrained Objects to Base Excitations (바닥진동에 의한 비구속 물체의 거동파악 실험과 수치해석 전산프로그램의 개발)

  • Lee, Sang Ho
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.3
    • /
    • pp.463-469
    • /
    • 2014
  • Safety related devices unconstrained temporally in the process of operation of nuclear power plants could be damaged by the sliding during seismic activity. In this study sliding response of unconstrained objects to the base excitations is studied experimentally and analytically. In experiments static and dynamic tests to determine the coefficient of friction and the shaking table experiments to verify the sliding response of the analytic results were conducted. Numerical solutions by solving the nonlinear differential equations of motion governing sliding were found by the computer program using the step by step acceleration method. The exact solutions of the sliding response to the simple forms of base excitations were found to verify the computer program developed in this study. Relative displacement envelopes were suggested as a colliding criteria of the unconstrained objects.

Development of Inverse Dynamic Controller for Industrial robots with HyRoHILS system

  • Yeon, Je-Sung;Kim, Eui-Jin;Lee, Sang-Hun;Park, Jong-Hyeon;Hur, Jong-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1972-1977
    • /
    • 2005
  • In this work, an inverse dynamic control method is developed to enhance tracking performance of industrial robots, which effectively deal with the nonlinear dynamic interferential forces. In general, the DFF (Dynamic Feed-Forward) controller and the CTM (Computed-Torque Method) controller are used for dynamic control for industrial robots. We study on the practical issues for implementing these inverse dynamic controllers via simulations and experiments. We develop the dynamic models in two different ways. One is a model designed through Newton-Euler method for real time computation and the other is a model designed through SimMechanics for evaluating the developed controller via simulations. We evaluate the nominal performance and robustness of the controller via simulations and experiments using serial 4-DOF HyRoHILS (Hyundai Robot Hardware-In-the-Loop Simulation) system. The results show that the inverse dynamic controller is effective and practically useful for a real control structure.

  • PDF

Information Propagation Neural Networks for Real-time Recognition of Load Vehicles (도로 장애물의 실시간 인식을 위한 정보전파 신경회로망)

  • Kim, Jong-Man;Kim, Hyong-Suk;Kim, Sung-Joong;Sin, Dong-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.546-549
    • /
    • 1999
  • For the safty driving of an automobile which is become individual requisites, a new Neural Network algorithm which recognized the load vehicles in real time is proposed. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. The most reliable algorithm derived for real time recognition of vehicles, is a dynamic programming based algorithm based on sequence matching techniques that would process the data as it arrives and could therefore provide continuously updated neighbor information estimates. Through several simulation experiments, real time reconstruction of the nonlinear image information is processed 1-D LIPN hardware has been composed and various experiments with static and dynamic signals have been implmented.

  • PDF

A Study on the Dynamic Characteristics of Free-Friction Stroke Damper by Finite Element Method (유한요소법을 이용한 Free-Friction Stroke 댐퍼의 동특성 해석)

  • Ku, Hi-Chun;Lee, Jae-Wook;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1417-1426
    • /
    • 2009
  • Various types of damper are usually applied to reduce noise and vibration for mechanical systems. Especially, for washing machines, the free-friction stroke damper is installed. The behavior of the free-friction stroke damper has nonlinear characteristics such as hysteresis and viscoelastic properties because of its foam material. First of all, the dynamic experiments were carried out by using a MTS machine to find characteristics of the free-friction stroke damper. And the simulation model of the free-friction stroke damper and characteristics of a foam material were evaluated by using optimization technique. To make a good simulation model which can show the dynamic characteristics, it is important to understand the working mechanism of the damper. The Finite Element Method (FEM) technique can help us instinctively understand the damping phenomenon under operating conditions, because we can observe the condition of damper at every step in the simulation by using it. Also, by changing factors, we can comprehend the variation of characteristics of damper. So, in this paper, a study on the dynamic characteristics of free-friction stroke damper by FEM is focused on. Finally, the possibility which physical experiments can be replaced into simulations is shown.