• Title/Summary/Keyword: nonlinear experiments

Search Result 951, Processing Time 0.035 seconds

Multi-physics Topology Optimization of High Efficiency Motor Considering Electromagnetics and Heat Transfer (전자기와 열전달을 고려한 고효율 모터의 다분야 위상최적설계)

  • Wang, Se-Myung;Shim, Ho-Kyoung;Moon, Hee-Gon;Cho, Yang-Hee;Kim, Myung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1058-1063
    • /
    • 2004
  • This paper presents a new approach regarding thermal characteristics associated with a design of the high efficiency motor. Electrical conduction materials, such as coil and aluminum embedded in the core generate high heat exerting negative influence on both lifetime and performance of machine. Thus, it is necessary to design high efficiency motor considering heat transfer in order to improve motor performance and to be protected against overheating. In this paper, firstly, numerical analysis of electromagnetic field is carried out by the nonlinear transient finite element method (FEM). Secondly, the linear static FEA of magneto-thermal field is implemented by applying source current computed by the nonlinear transient analysis. FE results are validated in terms of electromagnetics and heat transfer by experiments. And then, the pseudo-transient topology optimization using a multi-objective function is performed. The proposed method is applied to a squirrel cage single-phase induction motor of the scroll compressor.

  • PDF

Robust Adaptive Back-stepping Control Using Dual Friction Observer and RNN with Disturbance Observer for Dynamic Friction Model (외란관측기를 갖는 RNN과 이중마찰관측기를 이용한 동적마찰모델에 대한 강인한 적응 백-스테핑제어)

  • Han, Seong-Ik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.50-58
    • /
    • 2009
  • For precise tracking control of a servo system with nonlinear friction, a robust friction compensation scheme is presented in this paper. The nonlinear friction is difficult to identify the friction parameters exactly through experiments. Friction parameters can be also varied according to contact conditions such as the variation of temperature and lubrication. Thus, in order to overcome these problems and obtain the desired position tracking performance, a robust adaptive back-stepping control scheme with a dual friction observer is developed. In addition, to estimate lumped friction uncertainty due to modeling errors, a DEKF recurrent neural network and adaptive reconstructed error estimator are also developed. The feasibility of the proposed control scheme is verified through the experiment fur a ball-screw system.

Robust Optimal Nonlinear Control with Observer for Position Tracking of Permanent Magnet Synchronous Motors

  • Ha, Dong-Hyun;Lim, Chang-Soon;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.975-984
    • /
    • 2013
  • This paper proposes a robust optimal nonlinear control with an observer to reject the offset errors of position tracking for surface mounted permanent magnet synchronous motors. We provide the control method to reject offset errors and load torque for designing field oriented control (FOC) based the alternating current (AC) frame. The proposed method consists of a torque generator, a commutation scheme, an electrical controller, and a load torque observer. The mechanical controller is designed to compensate for load torque and the offset error and generate the desired torque. The commutation scheme is proposed to create the desired currents for the desired torque. The electrical controller is developed to guarantee the desired currents. The observer is designed to estimate both the velocity and the load torque. In order to obtain the robustness to parameter uncertainties and a gain tuning guide, the linear quadratic regulator method is applied to the proposed method. The closed-loop stability is proven. A detailed process for the FOC design and an analysis of the control methods based on the AC frame are presented. The performance of the proposed method was validated via experiments. The proposed method obtains the FOC based on the AC frame. Furthermore, the position tracking performance of the proposed method is superior to that of the conventional method.

Quality prediction method by using ZnO thin film deposition process modeling (ZnO 박막 증착 공정 모델링에 의한 품질 예측 기법)

  • Lim, Keun-Young;Chung, Doo-Yeon;Lee, Sang-Keuk;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.163-164
    • /
    • 2006
  • ZnO deposition parameters are not independent and have a nonlinear and complex properties respectively. Therefore, finding optimal process conditions are very difficult and need to do many experiments. To predict ZnO deposition result, neural network was used. To gather training data, Si, GaAs, and Glass were used for substrates, and substrate temperature, work pressure, RF power were $50-500^{\circ}C$, 15 mTorr, and 180-210 W respectively, and the purity of target was ZnO 4N. For predicting the result of ZnO deposition process exactly, sensitivity analysis and drawing a response surface was added. The temperature of substrate was evaluated as a most important variable. As a result, neural network could verify the nonlinear and complex relations of variables and find the optimal process condition for good quality ZnO thin films.

  • PDF

Parameter Estimation of Recurrent Neural Networks Using A Unscented Kalman Filter Training Algorithm and Its Applications to Nonlinear Channel Equalization (언센티드 칼만필터 훈련 알고리즘에 의한 순환신경망의 파라미터 추정 및 비선형 채널 등화에의 응용)

  • Kwon Oh-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.552-559
    • /
    • 2005
  • Recurrent neural networks(RNNs) trained with gradient based such as real time recurrent learning(RTRL) has a drawback of slor convergence rate. This algorithm also needs the derivative calculation which is not trivialized in error back propagation process. In this paper a derivative free Kalman filter, so called the unscented Kalman filter(UKF), for training a fully connected RNN is presented in a state space formulation of the system. A derivative free Kalman filler learning algorithm makes the RNN have fast convergence speed and good tracking performance without the derivative computation. Through experiments of nonlinear channel equalization, performance of the RNNs with a derivative free Kalman filter teaming algorithm is evaluated.

A new swarm intelligent optimization algorithm: Pigeon Colony Algorithm (PCA)

  • Yi, Ting-Hua;Wen, Kai-Fang;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.425-448
    • /
    • 2016
  • In this paper, a new Pigeon Colony Algorithm (PCA) based on the features of a pigeon colony flying is proposed for solving global numerical optimization problems. The algorithm mainly consists of the take-off process, flying process and homing process, in which the take-off process is employed to homogenize the initial values and look for the direction of the optimal solution; the flying process is designed to search for the local and global optimum and improve the global worst solution; and the homing process aims to avoid having the algorithm fall into a local optimum. The impact of parameters on the PCA solution quality is investigated in detail. There are low-dimensional functions, high-dimensional functions and systems of nonlinear equations that are used to test the global optimization ability of the PCA. Finally, comparative experiments between the PCA, standard genetic algorithm and particle swarm optimization were performed. The results showed that PCA has the best global convergence, smallest cycle indexes, and strongest stability when solving high-dimensional, multi-peak and complicated problems.

Stress Relaxation and Nonlinear Viscoelastic Model of PAN-PVC Copolymers (PAN-PVC 공중합체의 응력완화와 비선형 점탄성 모델)

  • Kim, Nam-Jeong
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.250-255
    • /
    • 2010
  • From the three element non-Newtonian model of one non-Newtonian viscoelastic Maxwell elements and a elastic spring, the stress relaxation equation was derived. The various model parameters of this equation were evaluated by appling the experimental results of stress relaxation to the stress relaxation equation. The theoretical curves calculated from this model parameters agreed with the experimental stress relaxation curves. From the parameters of nonlinear viscoelastic model, the hole volume, fine structure, viscoelastic properties and mechanical properties of polymer fibers were studied. The experiments of stress relaxation were carried out using the tensile tester with the solvent chamber. The stress relaxation curves of the two types polyacrylonitrile-polyvinylchloride copolymer and another two types PVC monofilament fibers were obtained in air and water of various temperatures.

Error Compensation due to Environmental Temperature for Diaphragm-Type Pressure Sensor (다이어프램형 압력센서에서 주변 온도에 의한 오차 보상)

  • Yun, Dae Jhonng;Ahn, Jung Hwan;Lee, Gil Seung;Kim, Hwa Young
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.177-181
    • /
    • 2019
  • Pressure sensors are used in various industries such as automobiles, airplanes, medical equipment, and coolers. Even if the ambient temperature changes, the measurement is reliable and stable. In this study a diaphragm-type pressure sensor was used to derive a temperature-compensated pressure estimation equation for accurate pressure measurement at $100^{\circ}C$ and $-40^{\circ}C$. To understand the characteristics of the pressure sensor diaphragm with respect to temperature and pressure, experiments were conducted in temperature-variable chamber using FEM analysis to confirm that the influence of temperature effect was nonlinear. Based on the experimental results, a nonlinear method for calculating the pressure by compensating for the error due to temperature was derived. The calculated pressure value is lower than 0.5 % at low and high temperatures, and lower than 0.4 % at $22^{\circ}C$, thereby eliminating the effect of temperature.

A Numerical Study on the Thermo-mechanical Response of a Composite Beam Exposed to Fire

  • Pak, Hongrak;Kang, Moon Soo;Kang, Jun Won;Kee, Seong-Hoon;Choi, Byong-Jeong
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1177-1190
    • /
    • 2018
  • This study presents an analytical framework for estimating the thermo-mechanical behavior of a composite beam exposed to fire. The framework involves: a fire simulation from which the evolution of temperature on the structure surface is obtained; data transfer by an interface model, whereby the surface temperature is assigned to the finite element model of the structure for thermo-mechanical analysis; and nonlinear thermo-mechanical analysis for predicting the structural response under high temperatures. We use a plastic-damage model for calculating the response of concrete slabs, and propose a method to determine the stiffness degradation parameter of the plastic-damage model by a nonlinear regression of concrete cylinder test data. To validate simulation results, structural fire experiments have been performed on a real-scale steel-concrete composite beam using the fire load prescribed by ASTM E119 standard fire curve. The calculated evolution of deflection at the center of the beam shows good agreement with experimental results. The local test results as well as the effective plastic strain distribution and section rotation of the composite beam at elevated temperatures are also investigated.

Flexural behavior of prestressed hybrid wide flange beams with hollowed steel webs

  • Han, Sun-Jin;Joo, Hyo-Eun;Choi, Seung-Ho;Heo, Inwook;Kim, Kang Su
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.691-703
    • /
    • 2021
  • In this study, experiments were conducted to evaluate the flexural performance of prestressed hybrid wide flange (PHWF) beams with hollowed steel webs. A total of four PHWF beams were fabricated, where the width and spacing of the steel webs and the presence of cast-in-place (CIP) concrete were set as the main test parameters, and their flexural behavior and crack patterns, and the longitudinal strain distribution in a section with respect to the width and spacing of the steel webs were analyzed in detail. The experiment results showed that, as the ratio of the width to the spacing of the steel webs decreased, the flexural stiffness and strength of the PHWF beams without CIP concrete decreased. In addition, in the case of composite PHWF beam with CIP concrete, fully composite behavior between the precast concrete and the CIP concrete was achieved through the embedded steel member. Finite element analyses were performed for the PHWF beams considering the bond properties between the hollowed steel webs and concrete, and nonlinear flexural analyses were also conducted reflecting the pre-compressive strains introduced only into the bottom flange. From the comparison of the test and analysis results, it was confirmed that the analysis models proposed in this study well evaluated the flexural behavior of PHWF beams with and without CIP concrete.