• Title/Summary/Keyword: nonlinear experiments

Search Result 951, Processing Time 0.026 seconds

Characterization of the dynamic behavior of a linear guideway mechanism

  • Chang, Jyh-Cheng;Wu, Shih-Shyn James;Hung, Jui-Pin
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.1-20
    • /
    • 2007
  • Dynamic behaviors of the contact surface between ball and raceway in a guideway mechanism vary with the applied loads and hence affect the mechanical responses of machine tools. The study aims to investigate the nonlinear characteristics of dynamic behaviors at the rolling contact interface in linear guideway mechanisms. Firstly, analytical method was introduced to understand the contact behaviors based on Hertz contact theory in a point-to-point way. Then, the finite element approach with a three-dimensional surface-to-surface contact model and appropriate contact stiffness was developed to study the dynamic characteristics of such linear guideways. Finally, experiments with modal test were conducted to verify the significance of both the analytical and the numerical results. Results told that the finite element approach may provide significant predictions. The study results also concluded that the current nonlinear models based on Hertz's contact theory may accurately describe the contact characteristic of a linear guideway mechanism. In the modal analysis, it was told that the natural frequencies vary a little with different loading conditions; however, the mode shapes are changed obviously with the magnitude of applied loads. Therefore, the stiffness of contact interface needs to be properly adjusted during simulation which may affect the dynamic characteristics of the machine tools.

Numerical study on the resonance response of spar-type floating platform in 2-D surface wave

  • Choi, Eung-Young;Cho, Jin-Rae;Jeong, Weui-Bong
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.37-46
    • /
    • 2017
  • This paper is concerned with the numerical study on the resonance response of a rigid spar-type floating platform in coupled heave and pitch motion. Spar-type floating platforms, widely used for supporting the offshore structures, offer an economic advantage but those exhibit the dynamically high sensitivity to external excitations due to their shape at the same time. Hence, the investigation of their dynamic responses, particularly at resonance, is prerequisite for the design of spar-type floating platforms which secure the dynamic stability. Spar-type floating platform in 2-D surface wave is assumed to be a rigid body having 2-DOFs, and its coupled dynamic equations are analytically derived using the geometric and kinematic relations. The motion-variance of the metacentric height and the moment of inertia of floating platform are taken into consideration, and the hydrodynamic interaction between the wave and platform motions is reflected into the hydrodynamic force and moment and the frequency-dependent added masses. The coupled nonlinear equations governing the heave and pitch motions are solved by the RK4 method, and the frequency responses are obtained by the digital Fourier transform. Through the numerical experiments to the wave frequency, the resonance responses and the coupling in resonance between heave and pitch motions are investigated in time and frequency domains.

Uncertainty reduction of seismic fragility of intake tower using Bayesian Inference and Markov Chain Monte Carlo simulation

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.47-53
    • /
    • 2017
  • The fundamental goal of this study is to minimize the uncertainty of the median fragility curve and to assess the structural vulnerability under earthquake excitation. Bayesian Inference with Markov Chain Monte Carlo (MCMC) simulation has been presented for efficient collapse response assessment of the independent intake water tower. The intake tower is significantly used as a diversion type of the hydropower station for maintaining power plant, reservoir and spillway tunnel. Therefore, the seismic fragility assessment of the intake tower is a pivotal component for estimating total system risk of the reservoir. In this investigation, an asymmetrical independent slender reinforced concrete structure is considered. The Bayesian Inference method provides the flexibility to integrate the prior information of collapse response data with the numerical analysis results. The preliminary information of risk data can be obtained from various sources like experiments, existing studies, and simplified linear dynamic analysis or nonlinear static analysis. The conventional lognormal model is used for plotting the fragility curve using the data from time history simulation and nonlinear static pushover analysis respectively. The Bayesian Inference approach is applied for integrating the data from both analyses with the help of MCMC simulation. The method achieves meaningful improvement of uncertainty associated with the fragility curve, and provides significant statistical and computational efficiency.

Estimation of Nitrite Concentration in the Biological Nitritation Process Using Enzymatic Inhibition Kinetics

  • GIL, KYUNG-IK;EUI-SO CHOI
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.377-381
    • /
    • 2002
  • Recently, interests to remove nitrogen in the nitritation process have increased because of its economical advantages, since it could be a short-cut process to save both oxygen for nitrification and carbon for denitrification compared to a typical nitrification. However, the kinetics related with the nitritation process has not yet been fully understood. Furthermore, many useful models which have been successfully used for wastewater treatment processes cannot be used to estimate effluent nitrite concentration for evaluating performance of the nitritation process, since the process rate equations and population of microorganisms for nitrogen removal in these models have been set up only for the condition of full nitrification. Therefore, the present study was conducted to estimate an effluent nitrite concentration in the nitritation process with a concept of enzymatic inhibition kinetics based on long-term laboratory experiments. Using a nonlinear least squares regression method, kinetic parameters were accurately determined. By setting up a process rate equation along with a mass balance equation of the nitrite-oxidizing step, an effluent nitrite concentration in the nitritation process was then successfully estimated.

NONLINEAR ANALYSIS OF SELF-EXCITED VIBRATION IN WHEELED TRACTOR VEHICLE'S DRIVELINE

  • Li, X.H.;Zhang, J.W.;Zeng, C.C.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.535-545
    • /
    • 2006
  • A nonlinear analysis of torsional self-excited vibration in the driveline system for wheeled towing tractors was presented, with a 2-DOF mathematical model. The vibration system was described as a second-order ordinary differential equation. An analytical approach was proposed to the solution of the second-order ODE. The mathematical neighborhood concept was used to construct the interior boundary and the exterior boundary. The ODE was proved to have a limit cycle by using $Poincar\'{e}-Bendixson$ Annulus Theorem when two inequalities were satisfied. Because the two inequalities are easily satisfied, the self-excited vibration is inevitable and even the initial slip rate is little. However, the amplitude will be almost zero when the third inequality is satisfied. Only in a few working modes of the towing tractor the third inequality is not satisfied. It is shown by experiments that the torsional self-excited vibration in the driveline of the vehicle is obvious.

Estimating model parameters of rockfill materials based on genetic algorithm and strain measurements

  • Li, Shouju;Yu, Shen;Shangguan, Zichang;Wang, Zhiyun
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.37-48
    • /
    • 2016
  • The hyperbolic stress-strain model has been shown to be valid for modeling nonlinear stress-strain behavior for rockfill materials. The Duncan-Chang nonlinear constitutive model was adopted to characterize the behavior of the modeled rockfill materials in this study. Accurately estimating the model parameters of rockfill materials is a key problem for simulating dam deformations during both the dam construction period and the dam operation period. In order to estimate model parameters, triaxial compression experiments of rockfill materials were performed. Based on a genetic algorithm, the constitutive model parameters of the rockfill material were determined from the triaxial compression experimental data. The investigation results show that the predicted strains provide satisfactory precision when compared with the observed strains and the strains forecasted by a gradient-based optimization algorithm. The effectiveness of the proposed inversion procedure of model parameters was verified by experimental investigation in a laboratory.

Propagation Neural Networks based on vision techniques for detecting of Faulty Insulator (불량애자 검출을 위한 비젼 기반 전파 신경망)

  • Kim, Jong-Man;Kim, Young-Min;Hwang, Jong-Sun;Park, Hyun-Chul;Lim, Sung-Ho;Kim, Hyun-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1097-1102
    • /
    • 2002
  • For detecting of Faulty Insulator, a new Lateral Information Propagation Networks (LIPN) has been proposed. Energized insulator is reduced the rate of insulation extremely, and taken the results dirty and injured. It is necessary to be actions that detect the faulty insulator and exchange the new one. And thus, we have designed the LIPN to be detected that insulators by the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. Information propagates among neighbor nodes laterally and inter-node interpolation is achieved. Through several simulation experiments,real time reconstruction of the nonlinear image information is processed.

  • PDF

A Dynamic Programming Neural Network to find the Safety Distance of Industrial Field (산업 현장의 안전거리 계측을 위한 동적 계획 신경회로망)

  • Kim, Jong-Man;Kim, Won-Sub;Kim, Yeong-Min;Hwang, Jong-Sun;Park, Hyun-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.09a
    • /
    • pp.23-27
    • /
    • 2001
  • Making the safety situation from the various work system is very important in the industrial fields. The proposed neural network technique is the real titre computation method based theory of inter-node diffusion for searching the safety distances from the sudden appearance-objests during the work driving. The main steps of the distance computation using the theory of stereo vision like the eyes of man is following steps. One is the processing for finding the corresponding points of stereo images and the other is the interpolation processing of full image data from nonlinear image data of obejects. All of them request much memory space and titre. Therefore the most reliable neural-network algorithm is drived for real time recognition of obejects, which is composed of a dynamic programming algorithm based on sequence matching techniques. And the real time reconstruction of nonlinear image information is processed through several simulations. I-D LIPN hardware has been composed, and the real time reconstruction is verified through the various experiments.

  • PDF

Numerical Experiment on the Sogcho Eddy due to the strong offshore winds in the East Sea

  • Kim Soon Young;Lee Hyong Sun;Lee Jae Chul
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.1
    • /
    • pp.7-18
    • /
    • 1998
  • In order to understand the generation of the Sogcho Eddy due to the strong offshore winds, we first investigated the characteristics of winds at Sogcho, Kangnung and Samchuk, and then carried out a series of numerical experiments using the nonlinear 1 1/2-layer model. The models were forced by wind stress fields, similar in structure to the prevailing winds that a field in the east coast of Korea during the winter season. The winds were composed of the background winds $(-1\;dyne/cm^2)$ for 90 days and the local winds $(-4\;dyne/cm^2)$ for 30 days. The analysis of wind data at three stations (Sogcho, Kangnung, and Samchuk) showed that the wind was stronger in winter than in other seasons and the offshore component was much dominant. According to our numerical solutions, the Sogcho Eddy of about 200 km in diameter was generated due to the strong offshore winds prevailing in the Kangnung - Sogcho regions. The eastward propagation of the Rossby waves reflected at the western boundary resulted in the eastward meandering motion from the eastern side of the eddy.

  • PDF

Posture control of double inverted pendulum with a single actuator (단일 구동부를 갖는 2축 도립진자의 자세제어)

  • Yi, Keon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.577-584
    • /
    • 1999
  • In this paper, the double inverted pendulum having a single actuator is built and the controller for the system is proposed. The lower link of the target pendulum system is hinged on the plate to free for rotation in the specified range($10^{\cire}$) on the x-z plane. The upper link is connected to the lower link through a DC motor. The double inverted pendulum built can be kept upright posture by controlling the position of the upper link even though it has no actuator in lower hinge. The algorithm to control the inverted pendulum consists of a state feedback controller within a linearizable range and a fuzzy logic controller coupled with a nonlinear feedback compensator for the rest of the range. Conventional state feedback control is employed, and the fuzzy controller is responsible for generating the reference joint angle of the upper link for the nonlinear feedback compensator which drives a DC motor to generate an indirect torque to the lower joint. As a result, we can get the upright posture of the proposed pendulum system. Simulations and experiments are conducted to show the validity of the proposed controller.

  • PDF