• Title/Summary/Keyword: nonlinear distributed control systems

Search Result 64, Processing Time 0.02 seconds

Optimal placement and tuning of multiple tuned mass dampers for suppressing multi-mode structural response

  • Warnitchai, Pennung;Hoang, Nam
    • Smart Structures and Systems
    • /
    • v.2 no.1
    • /
    • pp.1-24
    • /
    • 2006
  • The optimal design of multiple tuned mass dampers (multiple TMD's) to suppress multi-mode structural response of beams and floor structures was investigated. A new method using a numerical optimizer, which can effectively handle a large number of design variables, was employed to search for both optimal placement and tuning of TMD's for these structures under wide-band loading. The first design problem considered was vibration control of a simple beam using 10 TMD's. The results confirmed that for structures with widelyspaced natural frequencies, multiple TMD's can be adequately designed by treating each structural vibration mode as an equivalent SDOF system. Next, the control of a beam structure with two closely-spaced natural frequencies was investigated. The results showed that the most effective multiple TMD's have their natural frequencies distributed over a range covering the two controlled structural frequencies and have low damping ratios. Moreover, a single TMD can also be made effective in controlling two modes with closely spaced frequencies by a newly identified control mechanism, but the effectiveness can be greatly impaired when the loading position changes. Finally, a realistic problem of a large floor structure with 5 closely spaced frequencies was presented. The acceleration responses at 5 positions on the floor excited by 3 wide-band forces were simultaneously suppressed using 10 TMD's. The obtained multiple TMD's were shown to be very effective and robust.

Dispersion-managed Optical Transmission Links with the Random Distributed SMF Lengths (SMF 길이가 랜덤하게 분포하는 분산 제어 광전송 링크)

  • Lee, Young-Kyo
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.462-466
    • /
    • 2018
  • Optical phase conjugation combining with dispersion management (DM) is promising technique to compensate for signal distortion due to chromatic dispersion and nonlinear Kerr effects of single mode fiber (SMF) in optical communication systems. However the fixed SMF length in every fiber spans usually used in the optical links with optical phase conjugator(OPC) and DM restricts the flexible link configuration. The goal of this paper is to investigate the possibility of the flexible configurations of the ultra-high and long-haul optical transmission systems by using the random distribution of SMF length of each fiber spans consisted of the optical link. It is confirmed that the excellent compensation for the distorted wavelength division multiplexing signals in the optical links with the randomly distribution is obtained in case of the shorter averaged SMF length over all fiber spans. It is also confirmed that the control method of net residual dispersion suitable to good compensation is postcompensation and the extent of net residual dispersion(NRD) is -10 ps/nm in DM optical link consisted of fiber spans with the randomly distributed SMF lengths.

The injection petrol control system about CMAC neural networks (CMAC 신경회로망을 이용한 가솔린 분사 제어 시스템에 관한 연구)

  • Han, Ya-Jun;Tack, Han-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.395-400
    • /
    • 2017
  • The paper discussed the air-to-fuel ratio control of automotive fuel-injection systems using the cerebellar model articulation controller(CMAC) neural network. Because of the internal combustion engines and fuel-injection's dynamics is extremely nonlinear, it leads to the discontinuous of the fuel-injection and the traditional method of control based on table look up has the question of control accuracy low. The advantages about CMAC neural network are distributed storage information, parallel processing information, self-organizing and self-educated function. The unique structure of CMAC neural network and the processing method lets it have extensive application. In addition, by analyzing the output characteristics of oxygen sensor, calculating the rate of fuel-injection to maintain the air-to-fuel ratio. The CMAC may easily compensate for time delay. Experimental results proved that the way is more good than traditional for petrol control and the CMAC fuel-injection controller can keep ideal mixing ratio (A/F) for engine at any working conditions. The performance of power and economy is evidently improved.

Process operation improvement methodology based on statistical data analysis (통계적 분석기법을 이용한 공정 운전 향상의 방법)

  • Hwang, Dae-Hee;Ahn, Tae-Jin;Han, Chonghun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1516-1519
    • /
    • 1997
  • With disseminationof Distributed Control Systems(DCS), the huge amounts of process operation data could have been available and led to figure out process behaviors better on the statistical basis. Until now, the statistical modeling technology has been susally applied to process monitoring and fault diagnosis. however, it has been also thought that these process information, extracted from statistical analysis, might serve a great opportunity for process operation improvements and process improvements. This paper proposed a general methodolgy for process operation improvements including data analysis, backing up the result of analysis based on the methodology, and the mapping physical physical phenomena to the Principal Components(PC) which is the most distinguished feature in the methodology form traditional statistical analyses. The application of the proposed methodology to the Balst Furnace(BF) process has been presented for details. The BF process is one of the complicated processes, due to the highly nonlinear and correlated behaviors, and so the analysis for the process based on the mathematical modeling has been very difficult. So the statisitical analysis has come forward as a alternative way for the useful analysis. Using the proposed methodology, we could interpret the complicated process, the BF, better than any other mathematical methods and find the direction for process operation improvement. The direction of process operationimprovement, in the BF case, is to increase the fludization and the permeability, while decreasing the effect of tapping operation. These guide directions, with those physical meanings, could save fuel cost and process operator's pressure for proper actions, the better set point changes, in addition to the assistance with the better knowledge of the process. Open to set point change, the BF has a variety of steady state modes. In usual almost chemical processes are under the same situation with the BF in the point of multimode steady states. The proposed methodology focused on the application to the multimode steady state process such as the BF, consequently can be applied to any chemical processes set point changing whether operator intervened or not.

  • PDF