• Title/Summary/Keyword: nonlinear distortion

Search Result 387, Processing Time 0.026 seconds

Analysis of linear and nonlinear distortion effects on CDMA reverse link transmitter (CDMA 역방향 링크 송신부의 선형 및 비선형 왜곡 효과 분석)

  • 홍익표;장병준;유재호;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.10
    • /
    • pp.2165-2170
    • /
    • 1997
  • In this paepr, the distortion effects of impairments in CDMA transmitter system were analyzed. We considered not only linear distortion effects, for example, I/Q imbalance, quadrature offset and carrier leakage, but also nonlinear distortion effects such as AM-AM and AM-PM noise in power amplifier. To investigate how the impariments impact on the performance of CDMA transmitter, all effects represented as a function of CDMA modulation quality which is an important measure of the transmitted signal. These results show the limitation value of each impairment which is required to satisfy the IS-95 standard.

  • PDF

An Improved Fast Camera Calibration Method for Mobile Terminals

  • Guan, Fang-li;Xu, Ai-jun;Jiang, Guang-yu
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1082-1095
    • /
    • 2019
  • Camera calibration is an important part of machine vision and close-range photogrammetry. Since current calibration methods fail to obtain ideal internal and external camera parameters with limited computing resources on mobile terminals efficiently, this paper proposes an improved fast camera calibration method for mobile terminals. Based on traditional camera calibration method, the new method introduces two-order radial distortion and tangential distortion models to establish the camera model with nonlinear distortion items. Meanwhile, the nonlinear least square L-M algorithm is used to optimize parameters iteration, the new method can quickly obtain high-precise internal and external camera parameters. The experimental results show that the new method improves the efficiency and precision of camera calibration. Terminals simulation experiment on PC indicates that the time consuming of parameter iteration reduced from 0.220 seconds to 0.063 seconds (0.234 seconds on mobile terminals) and the average reprojection error reduced from 0.25 pixel to 0.15 pixel. Therefore, the new method is an ideal mobile terminals camera calibration method which can expand the application range of 3D reconstruction and close-range photogrammetry technology on mobile terminals.

Nonlinear Echo Cancellation using an ECLMS Algorithm (ECLMS 알고리즘을 이용한 비선형 반향신호 제거)

  • Nam, Sang-Won;Kim, Byoung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.10
    • /
    • pp.639-642
    • /
    • 2005
  • In this paper, a robust nonlinear echo cancellation is proposed, where a third-order adaptive Volterra filtering is employed along with an expanded correlation LMS (ECLMS) algorithm to compensate for nonlinear distortion in the echo path. (e.g., DAC of the hybrid network). Finally, the robustness in the echo cancellation of the proposed approach is demonstrated using computer simulations, where high attenuation of echo signals is achieved even in the double-talk situation (e.n., BdB improvement in ERLE).

Reduction of Structural and Computational Complexity in IMD Reduction Method of the PTS-based OFDM Communication System (PTS 방식의 OFDM 통신 시스템에서 IMD 저감 기법의 복잡도와 계산량 저감)

  • Kim, Seon-Ae;Lee, Il-Jin;Baek, Gwang-Hoon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8A
    • /
    • pp.583-591
    • /
    • 2009
  • OFDM(orthogonal frequency division multiplexing) signal with high PAPR(peak to average power ratio) produces the nonlinear distortion and/or decreases down the power efficiency of HPA(high power amplifier). So, the IMD(inter-modulation distortion) reduction method was proposed to reduce the nonlinear distortion, which shows better BER(bit error rate) performance than the PAPR reduction methods. However, IMD reduction method has inherent problem which system complexity and processing time increases because the FFT(fast Fourier transform) processor is added in transmitter and decision criterion of IMD reduction method is computed in frequency domain,. In this paper, therefore, we propose a new IMD reduction method to reduce the computational complexity and structure of IMD computation. And we apply this proposed method into OFDM system using PTS(partial transmit sequence) scheme and compare the computational complexity between conventional and proposed IMD reduction method. This method can reduce the system size and computational complexity. Also, the proposed has almost same BER performance with the conventional IMD reduction method.

A Study on Polynomial Pre-ditsortion Technique Using PAPR Reduction Methode (OFDM 시스템에서 PAPR 감소기법을 적용한 다항식 사전왜곡 기법에 관한 연구)

  • Park, Bee-ho;Kim, Wan-tae;Cho, Sung-joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.160-163
    • /
    • 2009
  • HPA is one of the most essential device in wireless communication systems. However, because of nonlinear characteristic of HPA transmit signal is distorted with both amplitude and phase, this distortion leads to deepening adjacent channel interference. So a technique to change the nonlinear characteristic with linear characteristic is needed. In this paper, Among all techniques, we adopts a polynomial pre-distortion technique. Pre-distorted signal by pre-distorter has opposite characteristic with HPA. In result, the signal passed through pre-distorter and HPA has linear characteristic. But the accuracy of opposite characteristic of HPA is decreased at near portion of saturation point. So we improve the accuracy of opposite characteristic of HPA by using PAPR reduction method. In this paper, an adaptive polynomial pre-distortion technique is introduced to counterbalance the nonlinear characteristic of the transmit power amplifier, and a PAPR reduction method is introduced to increase efficiency of polynomial pre-distorter.

  • PDF

Nonlinear Distortion Analysis of 2.4GHz Power Amplifier for IEEE 802.11g OFDM Wireless LAN (IEEE 802.11g OFDM 무선랜용 2.4GHz 전력증폭기의 비선형 왜곡분석)

  • Oh Chung Gyun;Choi Jae Hong;Koo Kyung Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.3 s.333
    • /
    • pp.39-44
    • /
    • 2005
  • The OFDM modulation and transmission block have been modeled in order to analyse the relationship between the 2.4GHz power amplifier distortion and output ACPR for the IEEE 802.11g wireless LAN. The nonlinear characteristic of the power amplifier has been modeled as AM-to-AM and AM-to-PM using the behavioral model, and the output spectrum is analysed with the phase distortion variation. Also, amplifier back-off value from P1dB to satisfy the required IEEE 802.11g standard spectrum mask s been simulated with modeled phase distortion, and the simulation data have been compared to the measured result by using the pre-distortion technique.

Evaluation of Buckling Distortion for the Thin Panel Welded Structure According to Welding Processes (박판 패널 용접부의 용접 기법에 따른 좌굴 변형에 관한 연구)

  • Shin, Sang-Beom;Lee, Dong-Ju;Lee, Joo-Sung
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.23-29
    • /
    • 2008
  • The purpose of this study is to propose the proper fillet welding process for preventing the buckling distortion in thin panel welded structure. In order to do it, a heat input model for laser hybrid welding process was developed using FEA and experiment. The principal factors controlling the angular distortion and longitudinal shrinkage force caused by FCA and laser hybrid welding were identified as the welding heat input and weld rigidity using FEA. The predictive equations of angular distortion and longitudinal shrinkage force for each welding process were formulated as a function of the principal factors proposed. With the predictive equations, the buckling distortion at the thin panel welded structure with welding process was evaluated and compared using nonlinear buckling analysis and STEM(simplified thermo elastic method). Based on the results, the best way to prevent the buckling distortion at the given welded panel structures was identified as an intermittent FCA welding.

PAPR Reduction Method in Multi-Code CDMA System (다중 코드 CDMA 시스템에서 PAPR저감 기법)

  • 이강미;김상우;유흥균
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.7
    • /
    • pp.685-691
    • /
    • 2004
  • In this paper, we propose the hybrid methods of SLM(selected mapping) and predistortion, and PTS(partial transmit sequence) and predistortion to reduce PAPR(peak to average power ratio) and to decrease the nonlinear distortion of the nonlinear HPA(high power amplifier) in the multi-code CDMA(code division multiple access) system. The phase rotation factors are transmitted as side information in PTS and SLM methods play an important role in the BER performance. So, we present the theoretical BER equation when the errors of side information are considered in the multi-code CDMA communication system. Simulation results show that PAPR is reduced and nonlinear distortion is compensated by hybrid methods. Therefore BER performance is enhanced.

Analysis on the Harmonics Characteristics Due to Increase & Decrease of Nonlinear Load (비선형 부하의 증감에 따른 고조파 특성 분석)

  • Kim, Jong-Gyeum;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.3
    • /
    • pp.100-106
    • /
    • 2003
  • The increasing application of power electronic equipment in industrial field has led to a growing concern for harmonic distortion and the resulting impacts on system equipment and operations. Harmonic currents are generated by the operation of nonlinear loads and equipment on the power system. These are more increased by unbalance voltage of electrical distribution power systems. This paper describes harmonics characteristics generated by varying of nonlinear load at the PCC under the voltage unbalance.

Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model

  • Rad, Mohammad Hossein Ghadiri;Shahabian, Farzad;Hosseini, Seyed Mahmoud
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.77-92
    • /
    • 2020
  • The present paper outlined a procedure for geometrically nonlinear dynamic analysis of functionally graded graphene platelets-reinforced (GPLR-FG) nanocomposite cylinder subjected to mechanical shock loading. The governing equation of motion for large deformation problems is derived using meshless local Petrov-Galerkin (MLPG) method based on total lagrangian approach. In the MLPG method, the radial point interpolation technique is employed to construct the shape functions. A micromechanical model based on the Halpin-Tsai model and rule of mixture is used for formulation the nonlinear functionally graded distribution of GPLs in polymer matrix of composites. Energy dissipation in analyses of the structure responding to dynamic loads is considered using the Rayleigh damping. The Newmark-Newton/Raphson method which is an incremental-iterative approach is implemented to solve the nonlinear dynamic equations. The results of the proposed method for homogenous material are compared with the finite element ones. A very good agreement is achieved between the MLPG and FEM with very fine meshing. In addition, the results have demonstrated that the MLPG method is more effective method compared with the FEM for very large deformation problems due to avoiding mesh distortion issues. Finally, the effect of GPLs distribution on strength, stiffness and dynamic characteristics of the cylinder are discussed in details. The obtained results show that the distribution of GPLs changed the mechanical properties, so a classification of different types and volume fraction exponent is established. Indeed by comparing the obtained results, the best compromise of nanocomposite cylinder is determined in terms of mechanical and dynamic properties for different load patterns. All these applications have shown that the present MLPG method is very effective for geometrically nonlinear analyses of GPLR-FG nanocomposite cylinder because of vanishing mesh distortion issue in large deformation problems. In addition, since in proposed method the distributed nodes are used for discretization the problem domain (rather than the meshing), modeling the functionally graded media yields to more accurate results.