• Title/Summary/Keyword: nonlinear distortion

Search Result 387, Processing Time 0.021 seconds

PAPR Reduction Method for the Nonlinear Distortion in the Multicode CDMA System (멀티코드 CDMA 시스템에서 비선형 왜곡에 대처하는 PAPR 저감 기법)

  • Kim Sang-Woo;Kim Namil;Kim Sun-Ae;Suh Jae-Won;Ryu Heung-Cyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.12 s.103
    • /
    • pp.1171-1178
    • /
    • 2005
  • Multi-code code division multiple access(MC-CDMA) has been proposed for providing the various service rates with different quality of service requirement by assigning multiple codes and increasing the capacity. However, it suffers from the serious problem of high peak to average power ratio(PAPR). So, it requires large input back-off, which causes poor power consumption in high power amplifier(HPA). In this paper, we propose a new method that can reduce PAPR efficiently by constraint codes based on the opposite correlation to the incoming information data in MC-CDMA. PAPR reduction depends on the length and indices of constraint codes in MC-CDMA system. There is a trade-off between PAPR reduction and the length of constraint codes. From the simulation results, we also investigate the BER improvement in AWGN channel with HPA. The simulation results show that BER performance can be similar with linear amplifier in two cases: 1) Using exact constraint codes without input back-off and 2) a few constraint codes with small input back-off.

Implementation on the Urine Analysis System using Color Correction and Chromaticity Coordinates Transform Methods (색 보정 및 색 좌표 변환 기법을 이용한 요분석 시스템의 구현)

  • 김기련;예수영;손정만;김철한;정도운;이승진;장용훈;전계록
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.183-192
    • /
    • 2003
  • A transformation methode of the chromaticity coordinates was proposed to calibrate the measured data obtained by a urine analysis system which implemented in our previous study. Generally. the reacted color of a reagent strip by urine analysis system often exhibit the color distortions due to nonlinear characteristics of the various devices that is the optic module mechanism. hardware, and surround circumstance. A color correction method for minimizing the color distortion play a few role in maintaining high accuracy and reproduction of the urine analysis system. In this work, we used the compensation method such as the shading correction, the characteristic curve extraction of RGB color by means of third order spline interpolation, and linear transformation using a reference color. In addition, 1931 CIE XYZ color space was used to compensate the color of the measured data by a standard reference system as colorimeter. A compensation matrix was obtained so that the output values of the urine analysis system is nearly equal to that of a standard reference system for identical color sample. Color correction obtained by a urine analysis system which implemented in our previous study exhibited a good color accuracy when it was compared with the reference data. Observed result from an experiments on ten items or a urinalysis strip that color difference or between two urine analysis system was 1.28.

Design of X-Band High Efficiency 60 W SSPA Module with Pulse Width Variation (펄스 폭 가변을 이용한 X-대역 고효율 60 W 전력 증폭 모듈 설계)

  • Kim, Min-Soo;Koo, Ryung-Seo;Rhee, Young-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.9
    • /
    • pp.1079-1086
    • /
    • 2012
  • In this paper, X-band 60 W Solid-State Power Amplifier with sequential control circuit and pulse width variation circuit for improve bias of SSPA module was designed. The sequential control circuit operate in regular sequence drain bias switching of GaAs FET. The distortion and efficiency of output signals due to SSPA nonlinear degradation is increased by making operate in regular sequence the drain bias wider than that of RF input signals pulse width if only input signal using pulsed width variation. The GaAs FETs are used for the 60 W SSPA module which is consists of 3-stage modules, pre-amplifier stage, driver-amplifier stage and main-power amplifier stage. The main power amplifier stage is implemented with the power combiner, as a balanced amplifier structure, to obtain the power greater than 60 W. The designed SSPA modules has 50 dB gain, pulse period 1 msec, pulse width 100 us, 10 % duty cycle and 60 watts output power in the frequency range of 9.2~9.6 GHz and it can be applied to solid-state pulse compression radar using pulse SSPA.

Blind Adaptive Equalization of Partial Response Channels (부분 응답 채널에서의 블라인드 적응 등화 기술에 관한 연구)

  • 이상경;이재천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11A
    • /
    • pp.1827-1840
    • /
    • 2001
  • In digital data transmission/storage systems, the compensation for channel distortion is conducted normally using a training sequence that is known a priori to both the sender and receiver. The use of the training sequences results in inefficient utilization of channel bandwidth. Sometimes, it is also impossible to send training sequences such as in the burst-mode communication. As such, a great deal of attention has been given to the approach requiring no training sequences, which has been called the blind equalization technique. On the other hand, to utilize the limited bandwidth effectively, the concept of partial response (PR) signaling has widely been adopted in both the high-speed transmission and high-density recording/playback systems such as digital microwave, digital subscriber loops, hard disk drives, digital VCRs and digital versatile recordable disks and so on. This paper is concerned with blind adaptive equalization of partial response channels whose transfer function zeros are located on the unit circle, thereby causing some problems in performance. Specifically we study how the problems of blind channel equalization associated with the PR channels can be improved. In doing so, we first discuss the existing methods and then propose new structures for blind PR channel equalization. Our structures have been extensively tested by computer simulation and found out to be encouraging in performance. The results seem very promising as well in terms of the implementation complexity compared to the previous approach reported in literature.

  • PDF

The Design of Predistortion Linearizer with Polar Function Generator for Cellular Band Using Even Order Harmonic Signals (2차 고조파 신호를 이용한 극 함수 발생기를 갖는 셀룰라 밴드용 전치 왜곡 선형화기 설계)

  • Kim, Ell-Kou;Jeon, Ki-Kyoung;Kim, Young;Kwon, Sang-Keun;Yoon, Young-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.11 s.114
    • /
    • pp.1050-1057
    • /
    • 2006
  • This paper proposes a new predistortion linearizer with amplitude modulator and PFG(Polar Function Generator) using second order harmonic signals. This linearizer consists of PFG that combine with in-phase and quadrature-phase of second harmonic signals and amplitude modulator in main path. The predistorted third order intermodulation distortion(IMD3) signals that are generated by amplitude modulator with fundamental and PFG signals, improve a amplifier nonlinear characteristics. The proposed linearizer and amplifier have been manufactured and tested to operate in cellular base-station transmitting band$(869\sim894MHz)$. The test results show that IMD3 can be removed by more than 22.5 dB in case of CW 2-tone signals ${\Delta}f=1$ MHz, and the adjacent channel power ratio(ACPR) also can be improved by more than 8.4 dB for CDMA IS-95 1FA signals.

Capacity Comparison of Two Uplink OFDMA Systems Considering Synchronization Error among Multiple Users and Nonlinear Distortion of Amplifiers (사용자간 동기오차와 증폭기의 비선형 왜곡을 동시에 고려한 두 상향링크 OFDMA 기법의 채널용량 비교 분석)

  • Lee, Jin-Hui;Kim, Bong-Seok;Choi, Kwonhue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.5
    • /
    • pp.258-270
    • /
    • 2014
  • In this paper, we investigate channel capacity of two kinds of uplink OFDMA (Orthogonal Frequency Division Multiple Access) schemes, i.e. ZCZ (Zero Correlation Zone) code time-spread OFDMA and sparse SC-FDMA (Single Carrier Frequency Division Mmultiple Access) robust to access timing offset (TO) among multiple users. In order to reflect the practical condition, we consider not only access TO among multiple users but also peak to average power ratio (PAPR) which is one of hot issues of uplink OFDMA. In the case with access TO among multiple users, the amplified signal of users by power control might affect a severe interference to signals of other users. Meanwhile, amplified signal by considering distance between user and base station might be distorted due to the limit of amplifier and thus the performance might degrade. In order to achieve the maximum channel capacity, we investigate the combinations of transmit power so called ASF (adaptive scaling factor) by numerical simulations. We check that the channel capacity of the case with ASF increases compared to the case with considering only distance i.e. ASF=1. From the simulation results, In the case of high signal to noise ratio (SNR), ZCZ code time-spread OFDMA achieves higher channel capacity compared to sparse block SC-FDMA. On the other hand, in the case of low SNR, the sparse block SC-FDMA achieves better performance compared to ZCZ time-spread OFDMA.

Nonlinear Vector Alignment Methodology for Mapping Domain-Specific Terminology into General Space (전문어의 범용 공간 매핑을 위한 비선형 벡터 정렬 방법론)

  • Kim, Junwoo;Yoon, Byungho;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.127-146
    • /
    • 2022
  • Recently, as word embedding has shown excellent performance in various tasks of deep learning-based natural language processing, researches on the advancement and application of word, sentence, and document embedding are being actively conducted. Among them, cross-language transfer, which enables semantic exchange between different languages, is growing simultaneously with the development of embedding models. Academia's interests in vector alignment are growing with the expectation that it can be applied to various embedding-based analysis. In particular, vector alignment is expected to be applied to mapping between specialized domains and generalized domains. In other words, it is expected that it will be possible to map the vocabulary of specialized fields such as R&D, medicine, and law into the space of the pre-trained language model learned with huge volume of general-purpose documents, or provide a clue for mapping vocabulary between mutually different specialized fields. However, since linear-based vector alignment which has been mainly studied in academia basically assumes statistical linearity, it tends to simplify the vector space. This essentially assumes that different types of vector spaces are geometrically similar, which yields a limitation that it causes inevitable distortion in the alignment process. To overcome this limitation, we propose a deep learning-based vector alignment methodology that effectively learns the nonlinearity of data. The proposed methodology consists of sequential learning of a skip-connected autoencoder and a regression model to align the specialized word embedding expressed in each space to the general embedding space. Finally, through the inference of the two trained models, the specialized vocabulary can be aligned in the general space. To verify the performance of the proposed methodology, an experiment was performed on a total of 77,578 documents in the field of 'health care' among national R&D tasks performed from 2011 to 2020. As a result, it was confirmed that the proposed methodology showed superior performance in terms of cosine similarity compared to the existing linear vector alignment.