• Title/Summary/Keyword: nonlinear design code

Search Result 242, Processing Time 0.025 seconds

Transient stress analysis of tracked vehicle structures under recoil impact load (주퇴충격하중을 받는 궤도차량 구조물의 천이응력해석)

  • 이영신;김용환;김영완;김동수;성낙훈
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.111-119
    • /
    • 1993
  • In this study, the transient impact structural stress analysis of tracked vehicle structures under recoil impact load is investigated. ANSYS, ABAQUS Code are used for modelling and analytical procedures. The highest maximum Tresca stress occurs on race ring portion and its stress level is (.sigma.$_{T}$)$_{max}$ =20-40kgf/m $m^{2}$. The second highest stress occurs on upper plate of chassis and down plate of turret. The maximum stress level increases with loading direction and elevation angle. The results from liner static load analysis are very much different with impact analysis. Therefore, the practical solutions of structures under impact load can be obtained by only nonlinear transient impact analysis. The impact stress analysis of the steel vehicle structures is conducted. The maximum stress level is less than (.sigma.$_T/)$_{max}$m $m^{2}$. So, the design concept of steel structures can be adapted for new alternatives.s.s.s..s.

  • PDF

Nonlinear Analysis of High Strength RC Columns Subjected to Axial Load and Biaxial Bending (2축 편심 축력을 받는 고강도 RC 기둥의 비선형해석)

  • 신성우;반병열;유석형;조문희;한경돈;이종원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.41-46
    • /
    • 2001
  • The main objective of this study is to provide data on high strength concrete columns subjected to axial load and biaxial bending. For the design of biaxial bending, the approximate method (Bresler load contour method, PCA load contour method) is presented in ACI code. The present study investigate whether the methods are valid in high strength concrete and compare analysis results(by FEM method) with experimental results. Also, this study examines whether statics method and failure surface equation(by Hsu) are adequate.

  • PDF

Improvement and Evaluation for Seismic Resistant Capacity of Reinforced Concrete Frame and Braced System under Load Reversals (반복하중을 받는 철근콘크리트 골조 및 보강시스템의 내진성능 평가 및 개선)

  • 김광연;하기주;신종학;이상목;이영범;조용태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.109-114
    • /
    • 2000
  • Recently, it is required to improve the structural performance, such as durability and earthquake resistant capacity due to the deterioration of structural components in the existing reinforced concrete building with the old aging and transition of design code. Therefore, the new technology should be developed, such as seismic retrofit and improvement of structural performance in the existing reinforced concrete building. This analytical study was performed to verify the effects of basic and reinforcing system in the reinforced concrete building. The analytical results by nonlinear finite element method were compared with the experimental results and the comparisons are judged to be good.

  • PDF

Nonlinear Analysis of Concrete Filled Steel Tubular Column under Concentric Axial Load (중심축력하의 콘크리트 충전 각형강관 기둥의 비선형 해석)

  • 김선웅;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.613-616
    • /
    • 2003
  • Steel-concrete composite columns are used extensively in modern buildings. Extensive research on composite columns in which structural steel are in concrete have been carried out. In-filled composite columns, however have received limited attention compared to encased columns. In this paper, interrelationship of parameters is examined into analyzing and comparing with data through ABAQUS program and experiment on concrete filled tubular column under axial load and propriety of model is checked out by FEM analysis. The main variations of this paper are width-thickness ratio of the section(B/t =33.3, 38.9, 44.4), concrete strength($f_{ck}$=240, 360kgf/$\textrm{cm}^2$), and width-length ratio($L_o$/B=8.0, 10.0, 12.0, 15.0, 20.0). The ultimate value obtained through analysis is compared with test value and calculated by design code of other countries and previous studies.

  • PDF

A Dynamic Structural Analysis System for Propeller Blades (프로펠러 날개의 동적 구조해석 시스템 개발)

  • 노인식;이정렬;이현엽;이창섭
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.114-120
    • /
    • 2004
  • Propeller blades have complex airfoil section type geometry and the thickness is continuously varied to both its length and cord-wise direction. in the present research, the finite element analysis program PROSTEC (Propeller Stress Evaluation Code) is developed to calculate the structural responses of propeller blades in irregular ship wake field. To represent the curved and skewed geometry of propeller blades accurately, 20-node curved solid element using the quadratic shape function is adopted. Input data for the analysis including the geometry and pressure distribution of propeller blades can be generated automatically from the propeller design program. And to visualize the results of analysis on windows system conveniently, the post processor PROSTEC-POST is developed.

Seismic behavior factors of buckling-restrained braced frames

  • Kim, Jinkoo;Park, Junhee;Kim, Sang-Dae
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.261-284
    • /
    • 2009
  • The seismic behavior of a framed structure with chevron-type buckling restrained braces was investigated and their behavior factors, such as overstrength, ductility, and response modification factors, were evaluated. Two types of structures, building frame systems and dual systems, with 4, 8, 12, and 16 stories were designed per the IBC 2003, the AISC LRFD and the AISC Seismic Provisions. Nonlinear static pushover analyses using two different loading patterns and incremental dynamic analysis using 20 earthquake records were carried out to compute behavior factors. Time history analyses were also conducted with another 20 earthquakes to obtain dynamic responses. According to the analysis results, the response modification factors turned out to be larger than what is proposed in the provision in low-rise structures, and a little smaller than the code-values in the medium-rise structures. The dual systems, even though designed with smaller seismic load, showed superior static and dynamic performances.

Seismic upgrading of structures with different retrofitting methods

  • Guneyisi, Esra Mete;Azez, Ibrahim
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.589-611
    • /
    • 2016
  • This paper presents an analytical study aimed at evaluating the seismic performance of steel moment resisting frames (MRFs) retrofitted with different approaches. For this, 3, 6 and 12 storey MRFs having four equal bays of 5 m were selected as the case study models. The models were designed with lateral stiffness insufficient to satisfy code drift and hinge limitations in zones with high seismic hazard. Three different retrofit strategies including traditional diagonal bracing system and energy dissipation devices such as buckling restrained braces and viscoelastic dampers were used for seismic upgrading of the existing structures. In the nonlinear time history analysis, a set of ground motions representative of the design earthquake with 10% exceedance probability in fifty years was taken into consideration. Considering the local and global deformations, the results in terms of inter-storey drift index, global damage index, plastic hinge formations, base shear demand and roof drift time history were compared. It was observed that both buckling-restrained braces and viscoelastic dampers allowed for an efficient reduction in the demands of the upgraded frames as compared to traditional braces.

Experimentally validated FEA models of HF2V damage free steel connections for use in full structural analyses

  • Desombre, Jonathan;Rodgers, Geoffrey W.;MacRae, Gregory A.;Rabczuk, Timon;Dhakal, Rajesh P.;Chase, J. Geoffrey
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.385-399
    • /
    • 2011
  • The aim of this research is to model the behaviour of recently developed high force to volume (HF2V) passive energy dissipation devices using a simple finite element (FE) model. Thus, the end result will be suitable for use in a standard FE code to enable computationally fast and efficient analysis and design. Two models are developed. First, a detailed axial model that models an experimental setup is created to validate the approach versus experimental results. Second, a computationally and geometrically simpler equivalent rotational hinge element model is presented. Both models are created in ABAQUS, a standard nonlinear FE code. The elastic, plastic and damping properties of the elements used to model the HF2V devices are based on results from a series of quasi-static force-displacement loops and velocity based tests of these HF2V devices. Comparison of the FE model results with the experimental results from a half scale steel beam-column sub-assembly are within 10% error. The rotational model matches the output of the more complex and computationally expensive axial element model. The simpler model will allow computationally efficient non-linear analysis of large structures with many degrees of freedom, while the more complex and physically accurate axial model will allow detailed analysis of joint connection architecture. Their high correlation to experimental results helps better guarantee the fidelity of the results of such investigations.

Wheel Load Distribution of Continous Reinforced Concrete Slab Bridge (연속 철근콘크리트 슬래브 교량의 윤하중 분포폭에 관한 연구)

  • 신호상;오병환
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.135-143
    • /
    • 1998
  • The wheel load distribution width for lane load is not specified in current Korea bridge design code(KD code), not like in current AASHTO and AASHTO LRFD specifications which specity it as twice of wheel load distribution width for wheel load. In this study, the wheel load distribution width in continuous reinforced concrete slab bridge is investigated. The major variables affecting the wheel load distribution of a reinforced concrete continuous slab bridge are the span length, bridge width, existence edge beam and boundary condition. From a series of comprehensive parametric study on each variable, the formula for wheel load distribution in continuous reinforced concrete slab bridge is proposed from the nonlinear regression analysis of finite element analysis results. The proposed formulas can be used efficiently in the accurate design of continuous reinforced concrete slab bridges.

Damage Probabilities according to the Structural Characteristics of Bridges and the Determination of Target Ductilities (교량의 구조특성에 따른 손상확률과 목표연성도 결정)

  • Sun, Chang-Ho;Lee, Jong-Seok;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.1-10
    • /
    • 2010
  • The target performance of a current seismic design code is to achieve collapse-prevention in order to minimize casualties. Existing structures are also being retrofitted to meet this target performance. This seismic performance seems to have been achieved in recent great overseas earthquakes, but the accompanying enormous economic loss is pointed out as a new problem. A new seismic design concept over the current target performance is required to reduce economic loss, in which a target performance is determined by the damage probability in order to control the damage levels of structures. In this study, the seismic behavior of bridges having different characteristics was investigated by nonlinear seismic analyses, and fragility curves with respect to a reference damage level were derived. Based on these results, the characteristics of target ductilities satisfying a target damage probability were investigated.