• Title/Summary/Keyword: nonlinear design code

Search Result 242, Processing Time 0.036 seconds

Capacity Design of Eccentrically Braced Frame Using Multiobjective Optimization Technique (다목적 최적화 기법을 이용한 편심가새골조의 역량설계)

  • Hong, Yun-Su;Yu, Eunjong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.419-426
    • /
    • 2020
  • The structural design of the steel eccentrically braced frame (EBF) was developed and analyzed in this study through multiobjective optimization (MOO). For the optimal design, NSGA-II which is one of the genetic algorithms was utilized. The amount of structure and interfloor displacement were selected as the objective functions of the MOO. The constraints include strength ratio and rotation angle of the link, which are required by structural standards and have forms of the penalty function such that the values of the objective functions increase drastically when a condition is violated. The regulations in the code provision for the EBF system are based on the concept of capacity design, that is, only the link members are allowed to yield, whereas the remaining members are intended to withstand the member forces within their elastic ranges. However, although the pareto front obtained from MOO satisfies the regulations in the code provision, the actual nonlinear behavior shows that the plastic deformation is concentrated in the link member of a certain story, resulting in the formation of a soft story, which violates the capacity design concept in the design code. To address this problem, another constraint based on the Eurocode was added to ensure that the maximum values of the shear overstrength factors of all links did not exceed 1.25 times the minimum values. When this constraint was added, it was observed that the resulting pareto front complied with both the design regulations and capacity design concept. Ratios of the link length to beam span ranged from 10% to 14%, which was within the category of shear links. The overall design is dominated by the constraint on the link's overstrength factor ratio. Design characteristics required by the design code, such as interstory drift and member strength ratios, were conservatively compared to the allowable values.

Audio Signal Processing using Parametric Array with KZK Model (KZK 모델을 이용한 파라메트릭 어레이 음향 신호 처리)

  • Lee, Chong-Hyun;Samuel, Mano;Lee, Jea-Il;Kim, Won-Ho;Bae, Jin-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.139-146
    • /
    • 2009
  • Parametric array for audio applications is analyzed by numerical modeling and analytical approximation. The nonlinear wave equations are used to provide design guidelines for the audio parametric array. A time domain finite difference code that accurately solves the KZK (Khokhlov-Zabolotskaya-Kuznetsov) nonlinear parabolic wave equation is used to predict the response of the parametric array. The time domain code relates the source size and the carrier frequency to the audible signal response including the output level and beamwidth to considering the implementation issues for audio applications of the parametric array, the emphasis is given to the frequency response and distortion. We use the time domain code to find out the optimal parameters that will help produce the parametric array with highest achievable output in terms of the average power within the demodulated signal. Parameters such as primary input frequency, audio source radius and the modulation method are given utmost importance. The output effect of those parameters are demonstrated through the numerical simulation.

  • PDF

Nonlinear Structural Analysis of the Spent Nuclear Fuel Disposal Canister Subjected to an Accidental Drop and Ground Impact Event (추락낙하 사고 시 지면과 충돌하는 고준위폐기물 처분용기의 비선형구조해석)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.75-86
    • /
    • 2019
  • The biggest obstacle in the nuclear power generation is the high level radioactive waste such as the spent nuclear fuel. High level radioactivities and generated heat make the safe treatment of the spent nuclear fuel very difficult. Nowadays, the only treatment method is a deep geological disposal technology. This paper treats the structural safe design problem of the spent nuclear fuel disposal canister which is one of the core technologies of the deep geological disposal technology. Especially, this paper executed the nonlinear structural analysis for the stresses and deformations occurring in the canister due to the impulsive force applied to the spent nuclear fuel disposal canister in the case of an accidental drop and ground impact event from the transportation vehicle in the repository. The main content of the analysis is about that the impulsive force is obtained using the commercial rigid body dynamic analysis computer code, RecurDyn, and the stress and deformation caused by this impulsive force are obtained using the commercial finite element static structural analysis computer code, NISA. The analysis results show that large stresses and deformations may occur in the canister, especially in the rid or the bottom of the canister, due to the impulsive force occurring during the collision impact period.

비 격리교량의 연성도를 목표로 하는 지진격리교량의 응답수정계수

  • 고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.432-439
    • /
    • 2000
  • According as ground acceleration becomes to exceed gravity acceleration recently, design is impossible or economical efficiency is poor in existing seismic design method. So increase of seismic isolated bridges is currently in progress. However, because base isolation design method is developed in high seismic regions. it may not be compatible in Korea. Therefore, this research has objective to evaluate ductility of pier and response modification factor according to the ductility of pier in seismic isolated bridges and to adapt to seismic characteristics in Korea. For this purpose, nonlinear analysis is accomplished with so many time histories derived from spectral density function compatible with response spectrum described in the design code and base isolation system modeled linear system, bi-linear system, and friction system. Through application of the proposed method, we had result that it may be compatible that response modification factor for the seismic isolated bridges is smaller than half of that for the conventional bridges when natural period of structures exceeds proper level.

  • PDF

Optimum Design of Reinforced Concrete frames Considering Serviceability (사용성을 고려한 RC뼈대 구조물의 최적설계)

  • 김기대;박성규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.279-286
    • /
    • 2002
  • This study is concerned wiか the practical optimum design of concrete framed structures considering serviceability - deflection, crack, fatigue. The optimizing problems of framed structure are formulated with the objective function and the constraints which take the section properties as the design variables. The objective functions are formulated as the total cost of the structures and the constraints are derived by using the criteria with respect to safety and serviceability based on the part of concrete bridge in the Korea standard code of road bridge. The SLP method is introduced to solve the formulated nonlinear programming problems in this study and tested out through the numerical examples. This developed optimizing algorithm is tested out and examined through the numerical examples for the practical use of design on the concrete framed structures. And their results are compared and analyzed to examine the possibility of optimization, the applicability and the convergency of this algorithm.

  • PDF

Nonlinear Seismic Analysis of Steel Buildings Considering the Stiffnesses of the Foundation-Soil System (기초지반강성을 고려한 철골 건축구조물의 비선형 지진해석)

  • Oh, Yeong Hui;Kim, Yong Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.173-180
    • /
    • 2006
  • The seismic responses of a building are affected by the base soil conditions. In this study, linear time-history seismic analysis and nonlinear pushover static seismic analysis were performed to estimate the base shear forces of 3-, 5-, and 7-story steel buildings, considering the rigid and soft soil conditions. Foundation soil stiffness, based on the equivalent static stiffness formula, is used for the damper, one of the Link elements in SAP 2000. The base shear forces of the steel buildings, estimated through time-history analysis using the general-purpose structural-analysis program of SAP 2000, were compared with those calculated using the domestic seismic design code, the UBC-97 design response spectrum. and pushover static nonlinear analysis. The steel buildings designed for gravity and wind loads showed elastic responses with a moderate earthquake of 0.11 g, while the elastic soft-soil layer increased the displacement and the base shear force of the buildings due to soil-structure interaction and soil amplification. Therefore, considering the characteristics of the soft-soil layer, it is more reasonable to perform an elastic seismic analysis of a building's structure during weak or moderate earthquakes.

Rollover Analysis of a Bus using Beam Element and Nonlinear Spring Characteristics (보 요소와 비선형 스프링 특성을 이용한 버스 전복 해석)

  • Park, Su-Jin;Yoo, Wan-Suk;Kwon, Yuen-Ju;Kim, Jin-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.56-63
    • /
    • 2007
  • In case of bus rollover, the body structure of the bus should be designed to ensure the survival space for passengers. So, this study focuses on evaluating rollover strength through a computer simulation using the commercial code, LS-DYNA3D at the initial stage of vehicle development. For this study, section structure was modeled using a simple beam element, and impact boundary conditions required by ECE(Economic Commission for Europe) regulation No.66 were applied. In order to confirm the validity of the beam element bus model, the results compared with the test results and shell element bus model. The analysis errors from beam element bus model are due to the difference in strain energy of joint area between beam and shell model. In this study, a method for the joint modeling was suggested by using nonlinear springs to which the collapse mechanisms were applied.

Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect

  • Katariya, Pankaj V.;Panda, Subrata Kumar
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.279-288
    • /
    • 2020
  • The computational post-buckling strength of the tilted sandwich composite shell structure is evaluated in this article. The computational responses are obtained using a mathematical model derived using the higher-order type of polynomial kinematic in association with the through-thickness stretching effect. Also, the sandwich deformation behaviour of the flexible soft-core sandwich structural model is expressed mathematically with the help of a generic nonlinear strain theory i.e. Green-Lagrange type strain-displacement relations. Subsequently, the model includes all of the nonlinear strain terms to account the actual deformation and discretized via displacement type of finite element. Further, the computer code is prepared (MATLAB environment) using the derived higher-order formulation in association with the direct iterative technique for the computation of temperature carrying capacity of the soft-core sandwich within the post-buckled regime. Further, the nonlinear finite element model has been tested to show its accuracy by solving a few numerical experimentations as same as the published example including the consistency behaviour. Lastly, the derived model is utilized to find the temperature load-carrying capacity under the influences of variable factors affecting the soft-core type sandwich structural design in the small (finite) strain and large deformation regime including the effect of tilt angle.

Nonlinear analysis of stability of rock wedges in the abutments of an arch dam due to seismic loading

  • Mostafaei, Hasan;Behnamfar, Farhad;Alembagheri, Mohammad
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.295-317
    • /
    • 2020
  • Investigation of the stability of arch dam abutments is one of the most important aspects in the analysis of this type of dams. To this end, the Bakhtiari dam, a doubly curved arch dam having six wedges at each of its abutments, is selected. The seismic safety of dam abutments is studied through time history analysis using the design-based earthquake (DBE) and maximum credible earthquake (MCE) hazard levels. Londe limit equilibrium method is used to calculate the stability of wedges in abutments. The thrust forces are obtained using ABAQUS, and stability of wedges is calculated using the code written within MATLAB. Effects of foundation flexibility, grout curtain performance, vertical component of earthquake, nonlinear behavior of materials, and geometrical nonlinearity on the safety factor of the abutments are scrutinized. The results show that the grout curtain performance is the main affecting factor on the stability of the abutments, while nonlinear behavior of the materials is the least affecting factor amongst others. Also, it is resulted that increasing number of the contraction joints can improve the seismic stability of dam. A cap is observed on the number of joints, above which the safety factor does not change incredibly.

Finite element micro-modelling of RC frames with variant configurations of infill masonry

  • Mohammad, Aslam F.;Khalid, Fatima;Khan, Rashid A.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.395-409
    • /
    • 2022
  • The presence of infill generally neglected in design despite the fact that infill contribution significantly increase the lateral stiffness and strength of the reinforced concrete frame structure. Several experimental studies and computational models have been proposed to capture the rational response of infill-frame interaction at global level. However, limited studies are available on explicit finite element modelling to study the local behavior due to high computation and convergence issues in numerical modelling. In the current study, the computational modelling of RC frames is done with various configurations of infill masonry in terms of types of blocks, lateral loading and reinforcement detailing employed with material nonlinearities, interface contact issues and bond-slip phenomenon particularly near the beam-column joints. To this end, extensive computational modelling of five variant characteristics test specimens extracted from the detailed experimental program available in literature and process through nonlinear static analysis in FEM code, ATENA generally used to capture the nonlinear response of reinforced concrete structures. Results are presented in terms of damage patterns and capacity curves by employing the finest possible detail provided in the experimental program. Comparative analysis shows that good correlation amongst the experimental and numerical simulated results both in terms of capacity and crack patterns.