• Title/Summary/Keyword: nonlinear deformation

Search Result 1,009, Processing Time 0.022 seconds

Lateral impact behaviour of concrete-filled steel tubes with localised pitting corrosion

  • Gen Li;Chao Hou;Luming Shen;Chuan-Chuan Hou
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.615-631
    • /
    • 2023
  • Steel corrosion induces structural deterioration of concrete-filled steel tubes (CFSTs), and any potential extreme action on a corroded CFST would pose a severe threat. This paper presents a comprehensive investigation on the lateral impact behaviour of CFSTs suffering from localised pitting corrosion damage. A refined finite element analysis model is developed for the simulation of locally corroded CFSTs subjected to lateral impact loads, which takes into account the strain rate effects on concrete and steel materials as well as the random nature of corrosion pits, i.e., the distribution patterns and the geometric characteristics. Full-range nonlinear analysis on the lateral impact behaviour in terms of loading and deforming time-history relations, nonlinear material stresses, composite actions, and energy dissipations are presented for CFSTs with no corrosion, uniform corrosion and pitting corrosion, respectively. Localised pitting corrosion is found to pose a more severe deterioration on the lateral impact behaviour of CFSTs due to the plastic deformation concentration, the weakened confinement and the reduction in energy absorption capacity of the steel tube. An extended parametric study is then carried out to identify the influence of the key parameters on the lateral impact behaviour of CFSTs with localised pitting corrosion. Finally, simplified design methods considering the features of pitting corrosion are proposed to predict the dynamic flexural capacity of locally pitted CFSTs subjected to lateral impact loads, and reasonable accuracy is obtained.

Stochastic buckling quantification of porous functionally graded cylindrical shells

  • Trinh, Minh-Chien;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.651-676
    • /
    • 2022
  • Most of the experimental, theoretical, and numerical studies on the stability of functionally graded composites are deterministic, while there are full of complex interactions of variables with an inherently probabilistic nature, this paper presents a non-intrusive framework to investigate the stochastic nonlinear buckling behaviors of porous functionally graded cylindrical shells exposed to inevitable source-uncertainties. Euler-Lagrange equations are theoretically derived based on the three variable refined shear deformation theory. Closed-form solutions for the shell buckling loads are achieved by solving the deterministic eigenvalue problems. The analytical results are verified with numerical results obtained from finite element analyses that are conducted in the commercial software ABAQUS. The non-intrusive framework is completed by integrating the Monte Carlo simulation with the verified closed-form solutions. The convergence studies are performed to determine the effective pseudorandom draws of the simulation. The accuracy and efficiency of the framework are verified with statistical results that are obtained from the first and second-order perturbation techniques. Eleven cases of individual and compound uncertainties are investigated. Sensitivity analyses are conducted to figure out the five cases that have profound perturbative effects on the shell buckling loads. Complete probability distributions of the first three critical buckling loads are completely presented for each profound uncertainty case. The effects of the shell thickness, volume fraction index, and stochasticity degree on the shell buckling load under compound uncertainties are studied. There is a high probability that the shell has non-unique buckling modes in stochastic environments, which should be known for reliable analysis and design of engineering structures.

Investigation of nonlinear free vibration of FG-CNTRC cylindrical panels resting on elastic foundation

  • J.R. Cho
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.439-449
    • /
    • 2023
  • Non-linear vibration characteristics of functionally graded CNT-reinforced composite (FG-CNTRC) cylindrical shell panel on elastic foundation have not been sufficiently examined. In this situation, this study aims at the profound numerical investigation of the non-linear vibration response of FG-CNTRC cylindrical panels on Winkler-Pasternak foundation by introducing an accurate and effective 2-D meshfree-based non-linear numerical method. The large-amplitude free vibration problem is formulated according to the first-order shear deformation theory (FSDT) with the von Karman non-linearity, and it is approximated by Laplace interpolation functions in 2-D natural element method (NEM) and a non-linear partial derivative operator HNL. The complex and painstaking numerical derivation on the curved surface and the crucial shear locking are overcome by adopting the geometry transformation and the MITC3+ shell elements. The derived nonlinear modal equations are iteratively solved by introducing a three-step iterative solving technique which is combined with Lanczos transformation and Jacobi iteration. The developed non-linear numerical method is estimated through the benchmark test, and the effects of foundation stiffness, CNT volume fraction and functionally graded pattern, panel dimensions and boundary condition on the non-linear vibration of FG-CNTRC cylindrical panels on elastic foundation are parametrically investigated.

A new metallic energy dissipation system for steel frame based on negative Poisson's ratio structures

  • Milad Masoodi;Ahmad Ganjali;Hamidreza Irani;Aboozar Mirzakhani
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.93-102
    • /
    • 2024
  • Using negative Poisson's ratio materials, an innovative metallic-yielding damper is introduced for the first time in this study. Through the use of ABAQUS commercial software, a nonlinear finite element analysis is conducted to determine the performance of the proposed system. Mild steel plates with elliptical holes are used for these types of dampers, which dissipate energy through an inelastic deformation of the constitutive material. To assess the capability of the proposed damper, nonlinear quasi-static finite element analyses have been conducted on the damper with a variety of geometric parameters. According to the results, the proposed system is ductile and has a high capacity to dissipate energy. The proposed auxetic damper has a specific energy absorption of 910.8 J/kg and a ductility of 33.6. Therefore, this damper can dissipate a large amount of earthquake input energy without buckling by increasing the buckling load of the brace with its ductile behavior. In addition, it was found that by incorporating auxetic dampers in the steel frame, the frame was made harder, stronger, and ductile and its energy absorption increased by 300%.

Effectiveness of rocking walls system in seismic retrofit of vertically irregular RC buildings

  • Tadeh Zirakian;Omid Parvizi;Mojtaba Gorji Azandariani;David Boyajian
    • Steel and Composite Structures
    • /
    • v.52 no.5
    • /
    • pp.543-555
    • /
    • 2024
  • This study examines the seismic vulnerability of vertically irregular reinforced concrete (RC) frame buildings, focusing on the effectiveness of retrofitting techniques such as rocking walls (RWs) in mitigating soft story mechanisms. Utilizing a seven-story residential apartment as a prototype in a high-seismicity urban area, this research performs detailed nonlinear simulations to evaluate both regular and irregular structures, both before and after retrofitting. Pushover and nonlinear time history analyses were conducted using OpenSees software, with a suite of nine ground motion records to capture diverse seismic scenarios. The findings indicate that retrofitting with RWs significantly improves seismic performance: for instance, roof displacements at the Collapse Prevention (CP) level decreased by up to 23% in the irregular structure with retrofitting compared to its non-retrofitted counterpart. Additionally, interstory drift ratios were more uniform post-retrofit, with Drift Concentration Factor (DCF) values approaching 1.0 across all performance levels, reflecting reduced variability in seismic response. The global ductility of the retrofitted buildings improved, with displacement ductility ratios increasing by up to 29%. These results underscore the effectiveness of RWs in enhancing global ductility, mitigating soft story failures, and providing a more predictable deformation pattern during seismic events. The study thus provides valuable insights into the robustness and cost-effectiveness of using rocking walls for retrofitting irregular RC buildings.

A study on nonlinear crash analysis of railway tankcar according to the overseas crashworthiness regulations (해외 충돌안전규정에 따른 유류탱크화차의 비선형충돌해석 연구)

  • Son, Seung Wan;Jung, Hyun Seung;Ahn, Seung Ho;Kim, Jin Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.843-850
    • /
    • 2020
  • The purpose of this study is to evaluate the structural risk and weakness of a railway tank car through nonlinear collision analysis according to overseas collision safety standards. The goal is to propose a crash safety design guideline for railway tank cars for transporting dangerous goods in Korea. We analyzed the buffer impact test procedure of railway freight cars prescribed in EN 12663-2 and the tank puncture test criteria prescribed in 49CFR179. A nonlinear finite element model according to each standard was modeled using LS-DYNA, a commercial finite element analysis solver. As a result of the buffing impact test simulation, it was predicted that plastic deformation would not occur at a collision speed of 6 km/h or less. However, plastic deformation was detected at the rear of the center sill and at the tank center supporting the structure at a collision speed of 8 km/h or more. As a result of a head-on test simulation of tank puncture, the outer tank shell was destroyed at the corner of the tank head when 4% of the kinetic energy of the impacter was absorbed. The tank shell was destroyed in the area of contact with the impacter in the test mode analysis of tank shell puncture when the kinetic energy of the moving vehicle was reduced by 30%. Therefore, the simulation results of the puncture test show that fracture at the tank shell and leakage of the internal material is expected. Consequently, protection and structural design reinforcement are required on railway tank cars in Korea.

A Quasi-nonlinear Numerical Analysis Considering the Variable Membrane Tension of Vertical Membrane Breakwaters (연직 막체방파제의 변동 막체장력을 고려한 준 비선형 수치해석)

  • Chun, In-Suk;Kim, Sun-Sin;Park, Hyun-Ju
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.4
    • /
    • pp.290-300
    • /
    • 2009
  • The existing numerical methods on the vertical membrane breakwater have employed a linear analysis where the variable membrane tension occurring during membrane motions is assumed to be very negligible compared to the initial tension. In the present study, a quasi-nonlinear analysis is attempted such that the temporary tension of the membrane is substituted by the average tension for a wave period that is sought by an iterative calculation. The results showed that with the increase of the wave period the reflection coefficients appeared larger and the transmission coefficients smaller compared to the results of the linear analysis. The application of the quasi-nonlinear analysis also showed that the performance of the structure is closely dependent on the horizontal deformation of the membrane. In order to suppress the horizontal deformation, it may be required to take the larger initial tension of the membrane or to put additional mooring lines in the middle of the vertical faces of the membrane. But for theses methods to be effective, a largely sized surface float should be installed to secure enough buoyancy to support such downward forces.

A Study on Seismic Performance Evaluation of Tunnel to Considering Material Nonlinearity (재료의 비선형성을 고려한 터널의 내진성능평가에 관한 연구)

  • Choi, Byoungil;Ha, Myungho;Noh, Euncheol;Park, Sihyun;Kang, Gichun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.92-102
    • /
    • 2022
  • Various numerical analysis models can be used to evaluate the behavior characteristics of tunnel facilities which are representative underground structures. In general, the Mohr-Coulomb model, which is most often used for numerical analysis, is an elastic-perfect plastic behavior model. And the deformation characteristics are the same during the load increase-load reduction phase. So there is a problem that the displacement may appear different from the field situation in the case of excavation analysis. In contrast, the HS-small strain stability model has a wide range of applications for each ground. And it is known that soil deformation characteristics can be analyzed according to field conditions by enabling input of initial elastic modulus and nonlinear curve parameter and so on. However, civil engineers are having difficulty using nonlinear models that can apply material nonlinear properties due to difficulties in estimating ground property coefficients. In this study, the necessity of rational model selection was reviewed by comparing the results of seismic performance evaluation using the Mohr-Coulomb model, which civil engineers generally apply for numerical analysis of tunnels, and the HS Small strain Stiffness model, which can consider ground nonlinearity.

Experimental and numerical investigation on flexural response of reinforced rubberized concrete beams using waste tire rubber

  • Memduh Karalar;Hakan Ozturk;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.43-57
    • /
    • 2023
  • The impacts of waste tire rubber (WTR) on the bending conduct of reinforced concrete beams (RCBs) are investigated in visualization of experimental tests and 3D finite element model (FEM) using both ANSYS and SAP2000. Several WTR rates are used in total 4 various full scale RCBs to observe the impact of WTR rate on the rupture and bending conduct of RCBs. For this purpose, the volumetric ratios (Vf) of WTR were chosen to change to 0%, 2.5%, 5% and 7.5% in the whole concrete. In relation to experimental test consequences, bending and rupture behaviors of the RCBs are observed. The best performance among the beams was observed in the beams with 2.5% WTR. Furthermore, as stated by test consequences, it is noticed that while WTR rate in the RCBs is improved, max. bending in the RCBs rises. For test consequences, it is clearly recognized as WTR rate in the RCB mixture is improved from 0% to 2.5%, deformation value in the RCB remarkably rises from 3.89 cm to 7.69 cm. This consequence is markedly recognized that WTR rates have a favorable result on deformation values in the RCBs. Furthermore, experimental tests are compared to 3D FEM consequences via using ANSYS software. In the ANSYS, special element types are formed and nonlinear multilinear misses plasticity material model and bilinear misses plasticity material model are chosen for concrete and compression and tension elements. As a consequence, it is noticed that each WTR rates in the RCBs mixture have dissimilar bending and rupture impacts on the RCBs. Then, to observe the impacts of WTR rate on the constructions under near-fault ground motions, a reinforced-concrete building was modelled via using SAP2000 software using 3-D model of the construction to complete nonlinear static analysis. Beam, column, steel haunch elements are modeled as nonlinear frame elements. Consequently, the seismic impacts of WTR rate on the lateral motions of each floor are obviously investigated particularly. Considering reduction in weight of structure and capacity of the members with using waste tire rubber, 2.5% of WTR resulted in the best performance while the construction is subjected to near fault earthquakes. Moreover, it is noticeably recognized that WTR rate has opposing influences on the seismic displacement behavior of the RC constructions.

Estimation of Strain for Large Deformation in SMA-textile Actuator Using Nonlinear Geometry Analysis (비선형 기하해석을 이용한 SMA 섬유 액츄에이터의 대변형에 대한 변형률 추정)

  • Muhammad Umar Elahi;Jaehyun Jung;Salman Khalid;Heung Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.4
    • /
    • pp.259-265
    • /
    • 2024
  • Shape memory alloy (SMA)-textile actuators have attracted significant attention across various fields, including soft robotics and wearable technology. These smooth actuators are developed by combining SMA and simple textile fibers and then knitting them into two loop patterns known as the knit (K-loop) and plain (P-loop) patterns. Both loops are distinguished by opposite bending characteristics owing to loop head geometry. However, the knitting processes for these actuator sheets require expertise and time, resulting in high production costs for knitted loop actuation sheets. This study introduces a novel method by which to assess the strain in SMA textile-based actuators, which experience large deformations when subjected to voltage. Owing to the highly nonlinear constitutive equations of the SMA material, developing an analytical model for numerical analysis is challenging. Therefore, this study employs a novel approach that utilizes a linear constitutive equation to analyze large deformations in SMA material with nonlinear geometry considerations. The user-defined material (UMAT) subroutine integrates the linear constitutive equation into the ABAQUS software suite. This equivalent unit cell (EUC) model is validated by comparing the experimental bending actuation results of K-loops and P-loops.