• 제목/요약/키워드: nonlinear deformation

Search Result 1,009, Processing Time 1.104 seconds

Stress analysis of ventricular myocarda according to heart pressure in diastole using finite element method (유한요소법을 이용하여 확장기때 압력에 따른 심실심근의 응력 해석)

  • Han, Geun-Jo;Kim, Sang-Hyun;Shin, Jung-Woog
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.05
    • /
    • pp.131-135
    • /
    • 1994
  • In order to study the shape and dimensions of heart, the procedures to reconstruct a three dimensional left ventricular geometry from two dimensional echocardiographic images is studied including the coordinate transformation, curve fitting and interpolation utilizing three dimensional position registration arm. Nonlinear material property of the left ventricular myocardium was obtained by finite element method performed on the reconstructed geometry and optimization techniques which compare the computer predicted 3D deformation with the experimentally determined deformation. Afterwards using the obtained nonlinear material propertry the stress distribution related with oxyzen consumption rate was analyzed.

  • PDF

Multi-spring model for 3-dimensional analysis of RC members

  • Li, Kang-Ning;Otani, Shunsuke
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.17-30
    • /
    • 1993
  • A practical multi-spring model is proposed for a nonlinear analysis of reinforced concrete members, especially columns, taking into account the interaction of axial load and bi-directional bending moment. The parameters of the model are determined on the basis of material properties and section geometry. The axial force-moment interaction curve of reinforced concrete sections predicted by the model was shown to agree well with those obtained by the flexural analysis utilizing realistic stress-strain relations of materials. The reliability of the model was also examined with respect to the test of reinforced concrete columns subjected to varying axial load and bi-directional lateral load reversals. The analytical results agreed well with the experiment.

Seismic performance evaluation and retrofitting with viscous fluid dampers of an existing bridge in Istanbul

  • Bayramoglu, Guliz;Ozgen, Alpay;Altinok, Enver
    • Structural Engineering and Mechanics
    • /
    • v.49 no.4
    • /
    • pp.463-477
    • /
    • 2014
  • In this paper, seismic performance of Kozyatagi Bridge is evaluated by employing nonlinear elasto-plastic dynamic analysis and the deformation-based performance. The time-history records of the 1999 Izmit, 1971 San Fernando and 1989 Loma Prieta earthquakes are modified by adopting a probability of exceedance of 2% in 50 years corresponding to the return period of 2475 years. The analysis is carried out for three different bearing cases which are movable bearings, restrained bearings, and movable bearings with viscous fluid dampers in the radial direction. The analysis results show that the bridge can be retrofitted with viscous fluid dampers. In this case the reinforced concrete piers need not be strengthened by any jacketing techniques in order to preserve the original architectural appearance of the bridge. The retrofitting design of the bridge with viscous fluid dampers is also presented in detail.

Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory

  • Amoli, Abolfazl;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.285-294
    • /
    • 2018
  • In this study, nonlinear dynamic response of a concrete plate retrofit with Aluminium oxide ($Al_2O_3$) under seismic load and magnetic field is investigated. The plate is a composite reinforced by Aluminium oxide with characteristics of the equivalent composite being determined using Mori-Tanka model considering agglomeration effect. The plate is simulated with higher order shear deformation plate model. Employing nonlinear strains-displacements, stress-strain, the energy equations of column was obtained and using Hamilton's principal, the governing equations were derived. Differential quadrature method (DQM) in conjunction with Newark method is applied for obtaining the dynamic response of structure. The influences of magnetic field, volume percent of nanoparticles, geometrical parameters of column, agglomeration and boundary conditions on the dynamic response were investigated. Results showed that with increasing volume percent of nanoparticles, the dynamic deflection decreases.

A Study on the Nonlinear Structural Behavior of a High-Pressure Filament Wound Composite Vessel (소형 복합재료 고압력 용기에 대한 비선형적 구조거동에 관한 연구)

  • 황경정;박지상;정재한;김태욱
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.10-14
    • /
    • 2002
  • Structural behavior of high-pressure composite vessels of TYPE 3 (full-wrapped over a seamless aluminum liner) was studied through numerical simulations based on 3D nonlinear finite element method. Under high-pressure loading, a TYPE 3 composite vessel shows material nonlinearity due to elastic-plastic deformation of aluminum liner, and mismatch of deformation at the junction of cylinder and dome causes geometrical nonlinearity. Finite element modeling and analysis technique considering this nonlinearity was presented, and a pressure vessel of 6.8L of internal volume was analyzed. Design specification to satisfy requirements was determined based on analysis results.

  • PDF

Finite Element Analysis of the Mandibular Canine for Nonlinear Deformation of the Periodontal Ligament (치주인대의 비선형 거동을 고려한 하악 견치의 유한요소해석)

  • Yang, Hoon-Chul;Kim, Ki-Tae;Ha, Man-Hee;Son, Woo-Sung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.550-557
    • /
    • 2003
  • Hyperelastic constitutive equations for nonlinear deformation of the periodontal ligament were investigated. The parameters in the strain energy potentials were obtained from experimental data for uniaxial and shear responses of the human periodontal ligament. The hyperelastic constitutive equations based on two strain energy potentials was also compared with the linear elastic equation, which is recently reported. The best fitted parameters in the strain energy potentials was applied to finite element program (ABAQUS) to simulate special orthodontic treatment of a mandibular canine.

  • PDF

The Stifiness Analysis and Optimization of the Elastomer Considering Nonlinear Behavior (비선형거동을 고려한 방진고무의 강성해석 및 최적설계)

  • Lee, Dong-hoon;Seo, Sang-ho;Park, Jin-goo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.330.1-330
    • /
    • 2002
  • Elastomer is extensively used to reduce of vibration machine or structure. Over the years an enormous effort has been put into developing procedures to provide properties of rubber material fur design function. However, there are still a lot of difficulties to analyze static characteristic of rubber components with hyper elasticity and nonlinear large deformation. In this paper material property is obtained by strain-stress curve using a tension test. (omitted)

  • PDF

Measurements o Elastic Moduli of Rock Cores Using Free-Free Resonacne Tests (자유단 공진시험을 이용한 암석의 탄성계수 측정)

  • 목영진
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.95-100
    • /
    • 1999
  • Dynamic measurements are used rather sparingly to determine the elastic modull of rock cores and modulus values are not much utilized in design practice. The reason seems to result from the general perception that values obtained by dynamic measurement are much higher (about 10 times) than those determined statically. This paper presents results from dynamic and static tests on rock cores. The findings are: 1) elastic modull can be consistently determined by laboratory seismic testing. 2) nonlinear deformation characteristics of rock cores was tentatively proposed with variation in elastic modulus with strain.

  • PDF

Lateral Load Distribution Factor for Modal Pushover Analysis (고차모드 영향이 반영된 Pushover 해석을 위한 횡하중 분배계수 제안)

  • Kim, Geon-Woo;Song, Jin-Gyu
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.236-243
    • /
    • 2005
  • Nonlinear static analysis is used to quantify the resistance of the structure to lateral deformation and to gauge the mode of deformation and intensity of local demands. A simple method for the nonlinear static analysis of complex building structures subjected to monotonically increasing horizontal loading(pushover analysis) is presented. The method is designed to be a part of new methodologies for the seismic design and evaluation of structures. A variety of existing pushover analysis procedures are currently being consolidated under programs such as ATC 40 and FEMA 273. And various techniques have been recommended, including the use of constant lateral force profiles and the use of adaptive and multimodal approaches. In this paper a modal pushover analysis using design response spectra of UBC 97 is proposed. Proposed method is compared against the method in FEMA 273 and ATC 40, and results of time history analysis.

  • PDF

Shape Optimization of 3D Nonlinear Electromagnetic Device Using Design Sensitivity Analysis and Mesh Relocation Method (설계 민감도법과 요소망 변형법을 이용한 3차원 비선형 전자소자의 형상최적화)

  • Ryu, Jae-Seop;Yingying, Yao;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.124-127
    • /
    • 2002
  • This paper presents a 3D shape optimization algorithm for electromagnetic devices using the design sensitivity analysis with finite element method. The structural deformation analysis based on the deformation theory of the elastic body under stress is used for mesh renewing. The design sensitivity and adjoint variable formulae are derived for the 3D nonlinear finite element method with edge element. The proposed algorithm is applied to the shape optimization of 3D electromagnet to get a uniform flux density at the air gap.

  • PDF