• Title/Summary/Keyword: nonlinear controller

Search Result 2,177, Processing Time 0.033 seconds

An adaptive controller with fuzzy compensator for nonlinear time-varying systems (비선형 시변 시스템을 위한 퍼지 보상기를 가진 적응 제어기)

  • Park, Geo-Dong;Jeon, Wan-Su;Kim, Jong-Hwa;Lee, Man-Hyeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.149-155
    • /
    • 1997
  • 본 논문에서는 비선형 시변 시스템을 제어할 경우 제어시스템의 안정성을 보장하고 성능을 향상시키기 위한 새로운 적응제어 구조를 전개하였다. 주어진 플랜트가 선형 시불변이라는 가정하에 표준 기준 모델 적응제어기가 적용될 경우 발생되는 출력오차는 플랜트의 비선형 시변특성으로 인하여 점근적으로 0에 수렴되지 않는다. 이때 미지의 출력오차를 점근적으로 0에 수렴시키는 방법으로 퍼지보상기를 사용하였으며 결과적으로 플랜트의 비선형 시변 특성을 보상하는 효과를 얻을 수 있었다. 퍼지 보상기로는 출력오차등의 조건에 따라 이득이 변하는 퍼지 PID 보상기를 도입하여 안정하게 설계되도록 노력하였다. 또한 출력오차를 점근적으로 0에 수렴시키는 것은 표준 기준 모델 적응제어기 내부의 모든 파라미터와 신호가 유한하게 됨을 의미하기 때문에, 제어시스템 전체의 안정도를 보장할 뿐만 아니라 결과적으로 과도응답 성능을 향상시킬 수 있게 되었다. 몇가지 예제를 대상으로 시뮬레이션을 수행하고 그 결과를 분석함으로써 비선형 시변 시스템을 제어할 경우 본 논문에서 전개된 새로운 적응제어 구조의 타당성을 확인하였다.

  • PDF

Development of Optimal Control System for Air Separation Unit

  • Ji, Dae-Hyun;Lee, Sang-Moon;Kim, Sang-Un;Kim, Sun-Jang;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.524-529
    • /
    • 2004
  • In this paper, We described the method which developed the optimal control system for air separation unit to change production rates frequently and rapidly. Control models of the process were developed from actual plant data using subspace identification method which is developed by many researchers in resent years. The model consist of a series connection of linear dynamic block and static nonlinear block (Wiener model). The model is controlled by model based predictive controller. In MPC the input is calculated by on-line optimization of a performance index based on predictions by the model, subject to possible constraints. To calculate the optimal the performance index, conditions are expressed by LMI(Linear Matrix Inequalities).In order to access at the Bailey DCS system, we applied the OPC server and developed the Client program. The OPC sever is a device which can access Bailey DCS system.The Client program is developed based on the Matlab language for easy calculation,data simulation and data logging. Using this program, we can apply the optimal input to the DCS system at real time.

  • PDF

Iterative learning control for discrete-time feedback systems and its applicationto a direct drive SCARA robot (이산시간 궤환 시스템에 대한 반복학습제어 및 직접구동형 SCARA 로보트에의 응용)

  • Yeo, Seong-Won;Kim, Jae-Oh;Hwang, Gun;Kim, Sung-Hyun;Kim, Do-Hyun;Ahn, Hyun-Sik
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.7
    • /
    • pp.56-65
    • /
    • 1997
  • In this paper, we propose a reference input odification-type iterative learning control law for a class of discrete-time nonlinear systems and prove the convergence of the output error. We can get the high-precision in case of the trajectroy control when the proposed control law is properly combined with a feedback controller, and we can easily implement the learning control law compared to the control input modification-type learning control law. To show the validity and the convergence perfodrmance of the proposed control law, we perform experimentations on the trajectroy control and rejection of periodic disturbance for a 2-axis SCARA-type direct drive robot.

  • PDF

Power Quality Improvement Using Hybrid Passive Filter Configuration for Wind Energy Systems

  • Kececioglu, O. Fatih;Acikgoz, Hakan;Yildiz, Ceyhun;Gani, Ahmet;Sekkeli, Mustafa
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.207-216
    • /
    • 2017
  • Wind energy conversion systems (WECS) which consist of wind turbines with permanent magnet synchronous generator (PMSG) and full-power converters have become widespread in the field of renewable power systems. Generally, conventional diode bridge rectifiers have used to obtain a constant DC bus voltage from output of PMSG based wind generator. In recent years, together advanced power electronics technology, Pulse Width Modulation (PWM) rectifiers have used in WECS. PWM rectifiers are used in many applications thanks to their characteristics such as high power factor and low harmonic distortion. In general, L, LC and LCL-type filter configurations are used in these rectifiers. These filter configurations are not exactly compensate current and voltage harmonics. This study proposes a hybrid passive filter configuration for PWM rectifiers instead of existing filters. The performance of hybrid passive filter was tested via MATLAB/Simulink environment under various operational conditions and was compared with LCL filter structure. In addition, neuro-fuzzy controller (NFC) was preferred to increase the performance of PWM rectifier in DC bus voltage control against disturbances because of its robust and nonlinear structure. The study demonstrates that the hybrid passive filter configuration proposed in this study successfully compensates current and voltage harmonics, and improves total harmonic distortion and true power factor.

Development, implementation and verification of a user configurable platform for real-time hybrid simulation

  • Ashasi-Sorkhabi, Ali;Mercan, Oya
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1151-1172
    • /
    • 2014
  • This paper presents a user programmable computational/control platform developed to conduct real-time hybrid simulation (RTHS). The architecture of this platform is based on the integration of a real-time controller and a field programmable gate array (FPGA).This not only enables the user to apply user-defined control laws to control the experimental substructures, but also provides ample computational resources to run the integration algorithm and analytical substructure state determination in real-time. In this platform the need for SCRAMNet as the communication device between real-time and servo-control workstations has been eliminated which was a critical component in several former RTHS platforms. The accuracy of the servo-hydraulic actuator displacement control, where the control tasks get executed on the FPGA was verified using single-degree-of-freedom (SDOF) and 2 degrees-of-freedom (2DOF) experimental substructures. Finally, the functionality of the proposed system as a robust and reliable RTHS platform for performance evaluation of structural systems was validated by conducting real-time hybrid simulation of a three story nonlinear structure with SDOF and 2DOF experimental substructures. Also, tracking indicators were employed to assess the accuracy of the results.

Performance Enhancement of Motion Control Systems Through Friction Identification and Compensation (마찰력 식별과 보상을 통한 운동제어 시스템의 성능 개선)

  • Lee, Ho Seong;Jung, Sowon;Ryu, Seonghyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.1-8
    • /
    • 2020
  • This paper proposes a method for measuring friction forces and creating a friction model for a rotary motion control system as well as an autonomous vehicle testbed. The friction forces versus the velocity were measured, and the viscous friction, Coulomb friction, and stiction were identified. With a nominal PID (proportional-integral-derivative) controller, we observed the adverse effects due to friction, such as excessive steady-state errors, oscillations, and limit-cycles. By adding an adequate friction model as part of the augmented nonlinear dynamics of a plant, we were able to conduct a simulation study of a motion control system that well matched experimental results. We have observed that the implementation of a model-based friction compensator improves the overall performance of both motion control systems, i.e., the rotary motion control system and the Altino testbed for autonomous vehicle development. By utilizing a better simulation tool with an embedded friction model, we expect that the overall development time and cost can be reduced.

Robust Real-time Control of Autonomous Mobile Robot Based on Ultrasonic and Infrared sensors (초음파 및 적외선 센서 기반 자율 이동 로봇의 견실한 실시간 제어)

  • Nguyen, Van-Quyet;Han, Sung-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.145-155
    • /
    • 2010
  • This paper presents a new approach to obstacle avoidance for mobile robot in unknown or partially unknown environments. The method combines two navigation subsystems: low level and high level. The low level subsystem takes part in the control of linear, angular velocities using a multivariable PI controller, and the nonlinear position control. The high level subsystem uses ultrasonic and IR sensors to detect the unknown obstacle include static and dynamic obstacle. This approach provides both obstacle avoidance and target-following behaviors and uses only the local information for decision making for the next action. Also, we propose a new algorithm for the identification and solution of the local minima situation during the robot's traversal using the set of fuzzy rules. The system has been successfully demonstrated by simulations and experiments.

Neural Network Based On-Line Efficiency Optimization Control of a VVVF-Induction Motor Drive (인공신경망을 이용한 VVVF-유도전동기 시스템의 실시간 운전효율 최적제어)

  • Lee, Seung-Chul;Choy, Ick;Kwon, Soon-Hak;Choi, Ju-Yeop;Song, Joong-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.166-174
    • /
    • 1999
  • On-line efficiency optimization control of an induction motor drive using neural network is important from the v viewpoints of energy saving and controlling a nonlinear system whose charact81istics are not fully known. This paper p presents a neural networklongleftarrowbased on-line efficiency optimization control for an induction motor drive, which adopts an optimal slip an밍J.lar frequency control. In the proposed scheme, a neuro-controller provides minimal loss operating point i in the whole range of the measured input power. Both simulation and experimental results show that a considerable e energy saving is achieved compared with the conventional constant vlf ratio operation.

  • PDF

A Study of Adaptive Load Torque Observer and Robust Precision Position Control of BLDD Motor (직접 구동용 BLDC 전동기의 정밀 Robust 위치제어 및 적응형 외란 관측기 연구)

  • 고종선;윤성구
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.138-143
    • /
    • 1999
  • A new control method for the precision robust position control of a brushless DC(BLDC) motor for direct drive m motor(BLDDM) system using the asymptotically stable adaptive load torque observer is presented. A precision position c control is obtained for the BLDD motor system appro성mately linearized using the fieldlongrightarroworientation method. Many of t these motor systems have BLDD motor to obtain no backlashes. On the other hand, it has disadvantages such as the h high cost and more complex controller caused by the nonlinear characteristics. And the load torque disturbance is d directly affected to a motor shaft. To r밍ect this problem, stability analysis is calTied out using Lyapunov stability t theorem. Using this results, the stability is proved and load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent CUlTent having the fast response.

  • PDF

A Improved Programmable-Dynamometer Control For Motor Drive Systems Testing (모터 구동시스템 시험을 위한 개선된 프로그램어블 다이나모메터 제어)

  • 김길동;박현준;조정민;전기영;오봉환;이훈구;한경희
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.5
    • /
    • pp.211-220
    • /
    • 2003
  • The control method of programmable dynamometer for overall test of machine is to load the reference torque which is computed from torque transducer into motor under test. But the torque information detected from torque transducer have a lot of noise when the load torque of meter is a small quantity or changing. Thus, torque transducer must have a low pass filter to detect a definite torque information. But The torque delay generated by filter with torque transducer occur a torque trouble for meter torque of programmable dynamometer. Therefore, this kind of system could not perform dynamic and nonlinear load. In this paper, the control method using the load torque observer without a measure for torque transducer is Proposed. The proposed system improved the problem of the torque measuring delay with torque transducer, and the load torque is estimated by the minimal order state observer based on the torque component of the vector control induction meter. Therefore, the torque controller is not affected by a load torque disturbance. To verify a superiority of the proposed control algorithm, the analysis for a root locus of a conventional control method and the proposed one, and simulation and experiment is performed. Therefore we hope to be extended in industrial application.