• 제목/요약/키워드: nonlinear contact analysis

검색결과 280건 처리시간 0.022초

볼 베어링을 이용 Linear Motion Guide의 동적 특성에 관한 연구 (Dynamic Characteristics of Linear Motion Guide Supported by Rolling Ball Bearings)

  • 최재석;이용섭;김윤영;이동진;이성진;유정훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.326-331
    • /
    • 2004
  • The linear motion (LM) guide using ball bearing has many advantages compared with conventional sliding guides. Therefore, LM guide using ball bearing has been used widely to increase the accuracy of the position of a system. This research investigates dynamic characteristics of LM guide through mainly linear analysis. Linear analysis is accomplished by Lagrange equation and finite element method. And another trial that is nonlinear analysis about one mode of LM guide(bouncing mode) from Hertzian contact theory is accomplished in the latter half of this research. Through nonlinear analysis we could observe the softening characteristic due to the Hertzian contact nonlinearity.

  • PDF

브레이크 스퀼 해석에서 접촉압력분포의 영향에 관한 연구 (The study on the influence of contact pressure distribution on brake squeal analysis)

  • 이호건;손민혁;서영욱;부광석;김흥섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1120-1124
    • /
    • 2007
  • Recently in the automotive brake industry brake squeal noise has become one of the top automotive quality warranty issues. The contact pressure is used to predict friction coupling in the brake squeal analysis. The formulation of friction coupling has performed by nonlinear static analysis prior to the complex eigenvalue analysis. This paper proposes a validation methodology of squeal analysis using modal testing and contact analysis and examines the effect of predicted contact pressure that leads to the discrepancy between unstable complex mode and squeal frequency. This studies compose a three step validation process : examining the modal characteristics of component and assembly loaded contact pressure using modal testing and FEM analysis and verifying the contact pressure distribution using nonlinear static analysis and experiment. Finally, the unstable modes from complex eigenvalue analysis and realistic squeal frequency from the noise dynamometer are investigated.

  • PDF

비선형 접촉문제 해석을 통한 얼음 디스펜서 덕트 캡 조립체의 밀봉성능 평가 및 개선방안 연구 (A Study on Evaluation and Improvement of Sealing Performance of Duct Cap Assembly for Ice Dispenser By Nonlinear Contact Problem Analysis)

  • 이부윤
    • 한국기계가공학회지
    • /
    • 제17권2호
    • /
    • pp.37-46
    • /
    • 2018
  • Present research is to evaluate and improve the sealing performance of the duct cap assembly for the ice dispensers through structural analysis. The nonlinear contact problems to check the sealing performance were analyzed using ANSYS software. The results of the analyses related to the sealing performance: the displacement distribution, the contact condition between the cap-silicon and the case, and the pressure distribution on the contact surface, were examined and discussed. Based on the results of the existing design of the duct cap assembly, two cases of the design modifications to improve the sealing performance were introduced. By examining the results of the two cases, a final design improvement plan was proposed and analyzed. It is shown that the sealing performance of the proposed final design is much more favorable than the existing design. The method of structural analysis and design improvement of the duct cap assembly presented in this paper will help improve the sealing performance of the ice dispenser duct caps.

Metal forming analysis using meshfree-enriched finite element method and mortar contact algorithm

  • Hu, Wei;Wu, C.T.
    • Interaction and multiscale mechanics
    • /
    • 제6권2호
    • /
    • pp.237-255
    • /
    • 2013
  • In this paper, a meshfree-enriched finite element method (ME-FEM) is introduced for the large deformation analysis of nonlinear path-dependent problems involving contact. In linear ME-FEM, the element formulation is established by introducing a meshfree convex approximation into the linear triangular element in 2D and linear tetrahedron element in 3D along with an enriched meshfree node. In nonlinear formulation, the area-weighted smoothing scheme for deformation gradient is then developed in conjunction with the meshfree-enriched element interpolation functions to yield a discrete divergence-free property at the integration points, which is essential to enhance the stress calculation in the stage of plastic deformation. A modified variational formulation using the smoothed deformation gradient is developed for path-dependent material analysis. In the industrial metal forming problems, the mortar contact algorithm is implemented in the explicit formulation. Since the meshfree-enriched element shape functions are constructed using the meshfree convex approximation, they pose the desired Kronecker-delta property at the element edge thus requires no special treatments in the enforcement of essential boundary condition as well as the contact conditions. As a result, this approach can be easily incorporated into a conventional displacement-based finite element code. Two elasto-plastic problems are studied and the numerical results indicated that ME-FEM is capable of delivering a volumetric locking-free and pressure oscillation-free solutions for the large deformation problems in metal forming analysis.

폴리머 표면측정을 위한 AFM 팁의 나노스케일 접촉-진동 해석 (Nanoscale Vibro-Contact Analysis of AFM Tip on Polymer Surface)

  • 이수일
    • 대한기계학회논문집A
    • /
    • 제30권2호
    • /
    • pp.135-140
    • /
    • 2006
  • In tapping mode atomic force microscopy (TM-AFM), the vibro-contact response of a resonating tip is used to measure the nanoscale topology and other properties of a sample surface. However, the nonlinear tipsurface interactions can affect the tip response and destabilize the tapping mode control. Especially it is difficult to obtain a good scanned image of high adhesion surfaces such as polymers and biomolecules using conventional tapping mode control. In this study, theoretical and experimental investigations are made on the nonlinear dynamics and control of TM-AFM. Also we report the surface adhesion is an additional important parameter to determine the control stability of TM-AFM. In addition, we proved that it was adequate to use Johnson-Kendall-Roberts (JKR) contact model to obtain a reasonable tapping response in AFM for the soft and high adhesion samples.

볼 베어링을 사용하는 선형 운동 가이드의 동적 특성 (Dynamic Characteristics of Linear Motion Supported by Rolling Ball Bearings)

  • 최재석;이용섭;김윤영;이동진;이성진;유정훈
    • 한국소음진동공학회논문집
    • /
    • 제14권9호
    • /
    • pp.868-876
    • /
    • 2004
  • The linear motion(LM) guide using ball bearing has many advantages compared with conventional sliding guides. Therefore, LM guide using ball bearing has been widely used to increase the accuracy of the position of a system. This research investigates dynamic characteristics of LM guide through mainly linear analyses. Linear analysis is accomplished by Lagrange equation and the finite element method. And another trial that performs nonlinear analysis about one mode(bouncing mode) of LM guide from Hertzian contact theory is accomplished in the latter half of this research. Through nonlinear analysis we could observe the softening characteristic due to the Hertzian contact nonlinearity.

이단 사이클로이드 드라이브의 비틀림 강성 (Torsional Rigidity of a Two-stage Cycloid Drive)

  • 김경홍;이춘세;안형준
    • 대한기계학회논문집A
    • /
    • 제33권11호
    • /
    • pp.1217-1224
    • /
    • 2009
  • This paper presents a finite element (FE) analysis of the torsional rigidity of a two-stage cycloid drive. The cycloid disk makes contact with a number of pin-rollers simultaneously and eccentric shafts transmit not only torque of the spur gear stage to the cycloid disk, but also that of the cycloid disk to the output disk. Contacts between the disk and pin-rollers are simplified as linear spring elements, and the bearing of eccentric shaft is modeled as a rigid ring that has frictional contact to the disk and an elastic support. FE analysis for an ideal solid cycloid drive was performed and verified by a theoretical calculation. Accurate contact forces were then estimated by iterating between FE analysis for contact forces and Hertz theory calculations for nonlinear contact stiffness. In addition, torsional rigidity of the cycloid drive is analyzed to show that the bearing and nonlinear Hertz contact theory should be considered in analysis and design of a cycloid drive, which was verified with experiments. Finally, the effects of contact stiffness, bearing stiffness and cycloid disk structural stiffness according to the cycloid disk rotation on the torsional rigidity were investigated.

연료전지 공기판의 비선형 접촉 해석 (Nonlinear Contact Analysis of the Air Plate in a Fuel Cell)

  • 박정선;양지혜;임종빈
    • 한국항공우주학회지
    • /
    • 제32권3호
    • /
    • pp.22-29
    • /
    • 2004
  • 박막연의 변형은 고분자 전해질 연료전지의 성능에 상당한 영향을 미친다. 탄소공기판의 응력 분포는 고분자 전해질 연료전지의 안정성과 작동 효율의 중요변수이다. 본 논문에서는 작동 조건에서의 공기판과 박막면의 구조해석을 수행하였다. 박막면의 구조적 변형은 연료전지의 변수들의 분포에 영향을 미친다. 본 연구에서는 두 가지 모델에 대한 해석을 수행하였다. 한가지는 박막면의 물성치를 비선형으로 가정한 것이고, 나머지 한가지는 박막면의 물성치를 비선형으로 가정하고 공기판과 박막면의 접촉면에 접촉 조건을 적용한 경우이다. 이 두 가지 경우에 대해서 해석해본 결과 각각의 응력과 변형율의 분포에서 차이가 있음을 알 수 있었다. 이 결과를 통해 연료전지의 연구에서 비선형 접촉 해석이 필요함을 알 수 있다.

판 스프링의 비선형 동특성 해석 (Finite Element Modeling and Analysis of Nonlinear Dynamic characterisics of Leaf spring)

  • 임홍재;권영일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.842-846
    • /
    • 1996
  • Leaf springs are widely used as a major suspension component in many commercial vehicles, such as buses, trucks, etc. They have a complex dynamic behavior due to the geometric nonlinear and the contact mechanism between the leaves. The interface conditions between the leaves play a significant role in the global behavior of the comfort and ride of the vehicle system. The paper concentrates on modeling leaf springs and contact frictions between the leaves using a nonlinear finite element approach. A nonlinear load-displacement hysteresis curve for the leaf spring is simulated and its results are compared with test results.

  • PDF

타이어의 접지 면적과 비선형 접지압력을 고려한 연성포장내의 거동 분석 (Pavement Response in Flexible Pavements using Nonlinear Tire Contact Pressure and Measured Tire Contact Area)

  • 조명환;김낙석;정지훈;서영국
    • 대한토목학회논문집
    • /
    • 제26권4D호
    • /
    • pp.601-608
    • /
    • 2006
  • 포장을 설계하고 설계 수명을 산정하거나 현재 공용중인 포장의 유지 관리를 위한 상태 평가를 수행해야하는 경우 포장의 거동 분석은 중요한 입력 변수로 작용하게 된다. 포장의 거동을 예측하기 위해서는 정확한 타이어의 접지면적과 타이어의 압력이 필요하다. 따라서 본 연구에서는 실제 측정된 타이어의 형상을 측정하여 PCA에서 제안한 타이어의 형상과 비교하고, 측정된 타이어의 접지면적과 타이어의 종류에 대한 타이어 압력분포를 사용하여 3차원 유한요소해석을 통하여 포장의 거동을 예측하고 예측된 포장의 거동과 실제 포장의 거동을 비교 분석하였다. 해석 결과 표층의 경우 타이어의 형상과 비선형 압력분포의 영향을 크게 받으며, 이러한 타이어의 특성을 고려함으로써 현장 거동을 보다 잘 설명할 수 있는 것으로 나타났다. 하지만 중간층의 경우 타이어의 영향이 크지 않은 것으로 나타났으며, 실제 현장 거동과 비교했을 때 타이어 하부에서는 큰 차이를 보여주어 실제 포장의 거동을 보다 정확하게 예측하기 위해서는 이 부분을 보다 명확하게 설명을 할 수 있어야 할 것으로 나타났다.