• Title/Summary/Keyword: nonlinear adaptive control

Search Result 749, Processing Time 0.023 seconds

A Study on the Variable Structure Adaptive Control Systems for a Nuclear Reactor (가변구조 적응제어이론에 의한 원자로부하추종 출력제어에 관한 연구)

  • Sung Ha Kwon;Hee Young Chun;Hyun Kook Shin
    • Nuclear Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.247-255
    • /
    • 1985
  • This paper describes a new method for the design of variable structure model-following control systems(VSMFC). This design concept is developed using the theory of variable structure systems (VSS) and slide mode. The new results are presented on the sliding control methodology to achieve accurate tracking for a class of nonlinear, multi-input multi-output(MIMO), time varying systems in the presence of parameter variations. The design requires little computational effort. The dynamic response is insensitive to parameter variations. The feasibility and the advantages of the method are illustrated by applying it to a 1000 MWe boiling water reactor(BWR). The control is studied in the range of 85%∼90% of rated power for load-following control. A set of 12 nonlinear differential equations is used to simulate the total plant. A 6-th order linear model has been developed from these equations at 85% of rated power. The obtained controller is shown by simulations to be able to compensate for a plant parameter variation over a wide power range.

  • PDF

High Performance Speed and Current Control of SynRM Drive with ALM-FNN and FLC Controller (ALM-FNN 및 FLC 제어기에 의한 SynRM 드라이브의 고성능 속도와 전류제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.249-256
    • /
    • 2009
  • The widely used control theory based design of PI family controllers fails to perform satisfactorily under parameter variation, nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of learning through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. The paper proposes high performance speed and current control of synchronous reluctance motor(SynRM) drive using adaptive learning mechanism-fuzzy neural network (ALM-FNN) and fuzzy logic control (FLC) controller. The proposed controller is developed to ensure accurate speed and current control of SynRM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. Also, this paper proposes the analysis results to verify the effectiveness of the ALM-FNN, FLC and ANN controller.

High Performance Speed and Current Control of SynRM Drive with ALM-FNN and FLC Controller (ALM-FNN 및 FLC 제어기에 의한 SynRM 드라이브의 고성능 속도와 전류제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.416-419
    • /
    • 2009
  • The widely used control theory based design of PI family controllers fails to perform satisfactorily under-parameter variation, nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of loaming through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. The paper proposes high performance speed and current control of synchronous reluctance motor(SynRM) drive using adaptive loaming mechanism-fuzzy neural network (ALM-FNN) and fuzzy logic control(FLC) controller. The proposed controller is developed to ensure accurate speed and current control of SynRM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. Also, this paper proposes the analysis results to verify the effectiveness of the ALM-FNN and ANN controller.

  • PDF

Active Noise Control by ANFIS for Unpredictable Secondary Path (불예측적 이차경로에 대한 ANFIS를 이용한 능동소음제어)

  • Kim, Eung-Ju;Choi, Won-Seock;Kim, Beom-Soo;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1964-1966
    • /
    • 2001
  • Active Noise control(ANC) is rapidly becoming the most effective way to reduce noises that can otherwise be very difficult and expensive to control. This research presents ANFIS (Adaptive Network Fuzzy Inference System) controller for adaptively noise cancelling in a duct. ANC system generates secondary control sound pressure with same amplitude and with opposite phase as noise to be eliminated. ANFIS controller is trained to optimize its parameters for adaptively cancelling noise. That is ANFIS train its parameters by gradient descent and LSE method so called hybrid method. This paper present ANFIS in active noise control which provides an improvement convergence speed and limitation of linearity condition. It can model nonlinear functions of arbitrary complexity and ANFIS can construct an input-ouput mapping based on both human knowledge in the form of Takagi and Sugeno's fuzzy if-then rules and stipulated input-output data pairs. This paper also shows that the proposed ANFIS active noise control system successfully cancelled noise.

  • PDF

A Torque Estimation and Switching Angle Control of SRM using Neural Network (신경회로망을 이용한 SRM의 토크 추정과 스위칭 각 제어)

  • 백원식;김민회;김남훈;최경호;김동희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.509-516
    • /
    • 2002
  • This paper presents a simple torque estimation method and switching angle control of Switched Reluctance Motor(SRM) using Neural Network(NN). SRM has gaining much interest as industrial applications due to the simple structure and high efficiency. Adaptive switching angle control is essential for the optimal driving of SRM because of the driving characteristic varies with the load and speed. The proper switching angle which can increase the efficiency was investigated in this paper. NN was adapted to regulate the switching angle and nonlinear inductance modelling. Experimental result shows the validity of the switching angle controller.

HIPI Controller of IPMSM Drive using ALM-FNN (ALM-FNN을 이용한 IPMSM 드라이브의 HIPI 제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.57-66
    • /
    • 2009
  • The conventional fixed gain PI controller is very sensitive to step change of command speed, parameter variation and load disturbances. The precise speed control of interior permanent magnet synchronous motor(IPMSM) drive becomes a complex issue due to nonlinear coupling among its winding currents and the rotor speed as well as the nonlinear electromagnetic developed torque. Therefore, there exists a need to tune the PI controller parameters on-line to ensure optimum drive performance over a wide range of operating conditions. This paper proposes hybrid intelligent-PI(HIPI) controller of IPMSM drive using adaptive learning mechanism(ALM) and fuzzy neural network(FNN). The proposed controller is developed to ensure accurate speed control of IPMSM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. The PI controller parameters are optimized by ALM-FNN at all possible operating condition in a closed loop vector control scheme, The validity of the proposed controller is verified by results at different dynamic operating conditions.

Fuzzy PD plus I Controller of a CSTR for Temperature Control

  • Lee, Joo-Yeon;So, Hye-Rim;Lee, Yun-Hyung;Oh, Sea-June;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.563-569
    • /
    • 2015
  • A chemical reaction occurring in CSTR (Continuous Stirred Tank Reactor) is significantly affected by the concentration, temperature, pressure, and reacting time of materials, and thus it has strong nonlinear and time-varying characteristics. Also, when an existing linear PID controller with fixed gain is used, the performance could deteriorate or could be unstable if the system parameters change due to the change in the operating point of CSTR. In this study, a technique for the design of a fuzzy PD plus I controller was proposed for the temperature control of a CSTR process. In the fuzzy PD plus I controller, a linear integral controller was added to a fuzzy PD controller in parallel, and the steady-state performance could be improved based on this. For the fuzzy membership function, a Gaussian type was used; for the fuzzy inference, the Max-Min method of Mamdani was used; and for the defuzzification, the center of gravity method was used. In addition, the saturation state of the actuator was also considered during controller design. The validity of the proposed method was examined by comparing the set-point tracking performance and the robustness to the parameter change with those of an adaptive controller and a nonlinear proportional-integral-differential controller.

An Adaptive Maximum Power Point Tracking Scheme Based on a Variable Scaling Factor for Photovoltaic Systems (태양광 시스템을 위한 가변 조정계수 기반의 적응형 MPPT 제어 기법)

  • Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok;Lim, Chun-Ho;Kim, Woo-Chull
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.423-430
    • /
    • 2012
  • An adaptive maximum power point tracking (MPPT) scheme employing a variable scaling factor is presented. A MPPT control loop was constructed analytically and the magnitude variation in the MPPT loop gain according to the operating point of the PV array was identified due to the nonlinear characteristics of the PV array output. To make the crossover frequency of the MPPT loop gain consistent, the variable scaling factor was determined using an approximate curve-fitted polynomial equation about linear expression of the error. Therefore, a desirable dynamic response and the stability of the MPPT scheme were maintained across the entire MPPT voltage range. The simulation and experimental results obtained from a 3 KW rated prototype demonstrated the effectiveness of the proposed MPPT scheme.

Neuro-fuzzy based approach for estimation of concrete compressive strength

  • Xue, Xinhua;Zhou, Hongwei
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.697-703
    • /
    • 2018
  • Compressive strength is one of the most important engineering properties of concrete, and testing of the compressive strength of concrete specimens is often costly and time consuming. In order to provide the time for concrete form removal, re-shoring to slab, project scheduling and quality control, it is necessary to predict the concrete strength based upon the early strength data. However, concrete compressive strength is affected by many factors, such as quality of raw materials, water cement ratio, ratio of fine aggregate to coarse aggregate, age of concrete, compaction of concrete, temperature, relative humidity and curing of concrete. The concrete compressive strength is a quite nonlinear function that changes depend on the materials used in the concrete and the time. This paper presents an adaptive neuro-fuzzy inference system (ANFIS) for the prediction of concrete compressive strength. The training of fuzzy system was performed by a hybrid method of gradient descent method and least squares algorithm, and the subtractive clustering algorithm (SCA) was utilized for optimizing the number of fuzzy rules. Experimental data on concrete compressive strength in the literature were used to validate and evaluate the performance of the proposed ANFIS model. Further, predictions from three models (the back propagation neural network model, the statistics model, and the ANFIS model) were compared with the experimental data. The results show that the proposed ANFIS model is a feasible, efficient, and accurate tool for predicting the concrete compressive strength.

Model-based Analysis of Cell-to-Cell Imbalance Characteristic Parameters in the Battery Pack for Fault Diagnosis and Over-discharge Prognosis (배터리 팩 내부 과방전 사전 진단을 위한 모델기반 셀 간 불균형 특성 파라미터 분석 연구)

  • Park, Jinhyeong;Kim, Jaewon;Lee, Miyoung;Kim, Byoung-Choul;Jung, Sung-Chul;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.381-389
    • /
    • 2021
  • Most diagnosis approaches rely on historical failure data that might not be feasible in real operating conditions because the battery voltage and internal parameters are nonlinear according to various operating conditions, such as cell-to-cell configuration and initial condition. To overcome this issue, the estimator and the predictor require integrated approaches that consider comprehensive data, with the degradation process and measured data taken into account. In this paper, vector autoregressive models (VAR) with various parameters that affect overdischarge to the cell in the battery pack were constructed, and the cell-to-cell parameters were identified using an adaptive model to analyze the influence of failure prognosis. The theoretical analysis is validated using experimental results in terms of the feasibility and advantages of fault prognosis.