• Title/Summary/Keyword: nonlinear FEM analysis

Search Result 363, Processing Time 0.024 seconds

Torque Analysis of Rotary Actuator Using Equvalent Magnetic Circuit method in combination with finite element method (등가자기회로법과 유한요소법을 이용한 액츄에이터의 토크특성 해석)

  • Kim, Young-Kyoun;Hong, Jung-Pyo;Kim, Je-Deok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.605-607
    • /
    • 2000
  • Although Equvalent Magnetic Circuit (EMC) method. Using lumped parameter and numerical analysis method are widely used for electric machine analysis. these are neither always accurate enough nor sometimes available to easily use. Moreover three dimensional finite element method (3D-FEM) is inherently unsuitable for electric machine performance evaluation due to its poor computational efficiency, such as too long calculation time and difficulty in modeling for analysis. In this paper, Nonlinear Equivalent Magnetic Circuit (NEMC) method in combination with 2D-FEM is proposed to analyze the electric machine requiring 3D-FEM, and this method applys to torque evaluation for rotary actuator of Electro Magnetic Electronic Controller Power Steering (EM-ECPS).

  • PDF

The Strength of Square Steel Tubular Column to H-beam Connections - Focused on the connections with outside-type diaphragm - (각형강관 기둥 - H형강 보의 접합부 내력 평가 - 외측형 다이아프램 접합부를 중심으로 -)

  • Lee, Seong Do;Kim, Pil Jung;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.11-20
    • /
    • 2004
  • This paper focused on square steel tubular column to H-beam connections (concrete filled tubular) with an outside-type diaphragm. Based on the yield line theory and the nonlinear static FEM analysis the specification equations were evaluated by comparing them with previous result of the simplified tensile experiment[please check. The yield line theory applied to the mechanical model theory revised by K. Morita, the nonlinear static FEM analysis using abaqus/standard, the ultimate strength equation in the specification equation using the factor for long-time loading, and the yield ratio according to material. The allowable strength in the specification equations applied the safety factors of 2.2 and 2.6 in the cases with and without filled concrete, respectively. Therefore, the evaluation of strength(for the previous result of the simplified tensile experiment in this study) was considered possible through the yield line theory, the nonlinear static FEM analysis, and the specification equations. Likewise, the specification equations were seen to be an underestimate of the previous result of the simplified tensile experiment. The strength and displaced mesh in the FEM analysis approximated the previous result of the simplified tensile experiment.

Comparison between two geometrical nonlinear methods for truss analyses

  • Greco, M.;Menin, R.C.G.;Ferreira, I.P.;Barros, F.B.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.6
    • /
    • pp.735-750
    • /
    • 2012
  • This paper presents a comparison between two different procedures to deal with the geometric nonlinear analysis of space trusses, considering its structural stability aspects. The first nonlinear formulation, called positional, uses nodal positions rather than nodal displacements to describe the finite elements kinematics. The strains are computed directly from the proposed position concept, using a Cartesian coordinate system fixed in space. The second formulation, called corotational, is based on the explicit separation between rigid body motion and deformed motion. The numerical examples demonstrate the performances and the convergence of the responses for both analyzed formulations. Two numerical examples were compared, including a lattice beam with postcritical behavior. Despite the two completely different approaches to deal with the geometrical nonlinear problem, the results present good agreement.

Nonlinear dynamic analysis of porous functionally graded materials based on new third-order shear deformation theory

  • Allah, Mohamed Janane;Timesli, Abdelaziz;Belaasilia, Youssef
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.1-17
    • /
    • 2022
  • The free and forced nonlinear dynamic behaviors of Porous Functionally Graded Material (PFGM) plates are examined by means of a High-Order Implicit Algorithm (HOIA). The formulation is developed using the Third-order Shear Deformation Theory (TSDT). Unlike previous works, the formulation is written without resorting to any homogenization technique neither rule of mixture nor considering FGM as a laminated composite, and the distribution of the porosity is assumed to be gradually variable through the thickness of the PFGM plates. Using the Hamilton principle, we establish the governing equations of motion. The Finite Element Method (FEM) is used to compute approximations of the resulting equations; FEM is adopted using a four-node quadrilateral finite element with seven Degrees Of Freedom (DOF) per node. Nonlinear equations are solved by a HOIA. The accuracy and the performance of the proposed approach are verified by presenting comparisons with literature results for vibration natural frequencies and dynamic response of PFGM plates under external loading. The influences of porosity volume fraction, porosity distribution, slenderness ratio and other parameters on the vibrations of PFGM plate are explored. The results demonstrate the significant impact of different physical and geometrical parameters on the vibration behavior of the PFGM plate.

Improved Effects of Steel Pipe Reinforced Multi-Step Grouting Method Using the Nonlinear 3-D Tunnel Analysis (3차원 터널해석에 의한 강관보강형 다단그라우팅의 보강효과)

  • Lee, Bong-Ryeol;Kim, Hyeong-Tak;Kim, Hak-Mun
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.5-20
    • /
    • 1996
  • In this study it was analyzed by 2-D FEM and 3-D FEM to evaluate the ground reinforceing effect of steel pipe reinforced multi -step grouting (SPRG) technique and the behavior of ground in the vicinity using the nonlinear FEM program for the ground condition of alluvium located on the top of tunnel applied by SPRG technique. It was found that the nonlinear 3-D analysis performed better than 2-D analysis in evaluating the usefulness of the SPRG technique, and it was also found that the safety was relatively secured by the stiffness of steel pipe to distribute the concentrated stress in the tunnel faceing. It was reported that the change of settlement on the top of tunnel becomes about 40% of the total expected settlement before tunnel faceing reaches tunnel gauging point, and 60% of the total expected settlement while tunnel facing passes tunnel gauging point and takes a distance about tunnel diameter. With the aid of the SPRG technique the control range of displacement and stress of the ground in the vicinity could be reached up to tunnel top, namely depth ratio from 0.38 to 0.83 or 2D(D : tunnel diameter) before the tunnel facing, and about 20% of settlement control in this particular case was possible.

  • PDF

Two-way Shear Behavior Analysis of Transfer Slab-Column Connection with Reverse Drop Panel Through Nonlinear FE Analysis (역드랍 패널 적용 전이슬래브-기둥 접합부의 비선형 유한요소해석을 통한 2면 전단거동 분석)

  • Jeong, Seong-Hun;Kang, Su-Min;Kim, Seung-Il;Lee, Chang-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.103-111
    • /
    • 2020
  • Recently, the use of transfer slab system has increased greatly. However, several construction problems are being encountered owing to its excessive thickness. Therefore, in this study, a transfer slab system that uses a reverse drop panel, which can utilize the facility space of the pit floor by reducing the transfer slab thickness, was considered. To investigate the shear behavior of transfer slab system that uses the reverse drop panel, the two-way shear strength of transfer slab-column connection with the reverse drop panel was analyzed using nonlinear FE analysis. In addition, the two-way shear strength evaluations of transfer slab with the reverse drop panel conducted using the existing evaluation methods were verified by comparing the strengths predicted by those methods with the results of nonlinear FE analysis.

Finite Element Analysis of Synchronous Reluctance Motor Considering Iron Core Loss (철손을 고려한 동기형 릴럭턴스 전동기의 유한요소해석)

  • Lee, Jung-Ho;Hyeon, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.4
    • /
    • pp.187-193
    • /
    • 1999
  • This study investigates the hysteresis phenomena of a Synchronous Reluctance Motor (SynRM) using coupled FEM and Preisach modeling. Preisach's model, which allows accurate prediction of hysteresis, is adopted in this procedure to provide a nonlinear solution. the computer simulation and experimental result for the i$\lambda$loci show the propriety of the proposed method.

  • PDF

A Study on the Safety Estimation of Low Pressure Torsion mounted Turbine Blade (비틀림 마운트형 저압 터빈 블레이드의 안전성 평가에 관한 연구)

  • 홍순혁;조석수;주원식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.149-156
    • /
    • 2003
  • The estimation of fatigue limit for the component with complicated shape is difficult than of standard fatigue specimen, due to complex test equipment. So, we substitute maximum principle stress from FEM results for fatigue limit diagram made by standard fatigue specimen. Then we can estimate endurance safety of component with high trust. The static stress analysis, the nonlinear contact stress analysis and the model analysis for turbine blade is performed by ANSYS ver. 5.6. the comparison of maximum static stress around hole with maximum contact stress between pun and hole can make the cause of fracture for turbine blade clear. The difference of fatigue limit between fatigue test by standard specimen and in-service mechanical components is due to surface roughness and machining condition etc. In in-service mechanical components, Goodman diagram has to consider surface roughness for failure analysis. To find fracture mechanism of torison-mounted blade in nuclear plant. This study performs the static stress, the nonlinear contact stress and the modal analysis on torison-mounted blade with finite element method and makes the estimation for safety of turbine blade.

Verification of experimental test for PSC-Steel-PSC hybrid beam using nonlinear FEM analysis (비선형 FEM 해석을 이용한 PSC-Steel-PSC 혼합구조 보의 휨 실험 검증)

  • Kim, Sang-Hyo;Won, Jung-Hun;Park, Se-Jun;Lee, Chan-Gu
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.517-520
    • /
    • 2009
  • 본 연구에서는 비선형 FEM 해석을 이용하여 PSC(Prestressed concrete)와 강으로 구성된 혼합구조 보의 휨 실험을 검증하였다. 혼합구조 보의 거동에 가장 큰 영향을 미치는 연결부는 Perfobond rib로 구성된 경우와 스터드로 구성된 경우를 고려하였다. 이종 재료가 접하는 경계면의 상호 작용에 대해 완전합성과 부분합성인 경우를 고려하여 혼합구조 보의 비선형 해석을 수행한 후 해석 결과와 실험 결과를 비교하였다. 하중-처짐관계, 파괴 형상 등의 해석 결과를 실험 결과와 비교한 결과, 부분합성을 고려한 모형이 실험 결과와 유사한 거동을 보였으며 또한 Perfobond rib를 갖는 실험체가 스터드를 갖는 실험체보다 해석 결과와 비교 시 안전측의 결과를 나타냈다.

  • PDF

A Numerical Calculation of Eddy Current Field by Applying FEM and BEM Alternately (유한요소법과 경계요소법의 교호적용에 의한 와전류장 해석)

  • Im, Jae-Won
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.7
    • /
    • pp.457-461
    • /
    • 2000
  • The finite element method (FEM) is suitable for the analysis of a complicated region that includes nonlinear materials, whereas the boundary element method (BEM) is naturally effective for analyzing a very large region with linear characteristics. Therefore, considering the advantages in both methods, a novel algorithm for the alternate application of the FEM and BEM to magnetic field problems with the open boundary is presented. This approach avoids the disadvantages of the typical numerical methods with the open boundary problem such as a great number of unknown values for the FEM and non-symmetric matrix for the Hybrid FE-BE method. The solution of the overall problems is obtained by iterative calculations accompanied with the new acceleration method.

  • PDF