• Title/Summary/Keyword: nondestructive testing technology

Search Result 346, Processing Time 0.02 seconds

Dry Magnetic Particle Inspection of Ingot Cast Billets (강편 빌레트의 건식 자분 탐상)

  • Kim, Goo-Hwa;Lim, Zhong-Soo;Lee, Eui-Wan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.3
    • /
    • pp.162-173
    • /
    • 1996
  • Dry magnetic particle inspection(MPI) was performed to detect the surface defects of steel ingot cast billets. Magnetic properties of several materials were characterized by the measurement of the B-H hysteresis curve. The inspection results were evaluated in terms of the magnetizing current, temperature, and the amount of magnetic particles applied to billets. Magnetic flux leakage near the defect site of interest was measured and compared with the results of calculation by the finite element method in the case of direct magnetizing current. Direct and alternating magnetizing currents for materials were deduced by the comparison of the inspections. Results of the magnetic particle inspection by direct magnetizing current were compared with those of finite element method calculations, which were verified by measuring magnetic leakage flux above the surface and the surface defects of the material. For square rods, due to the geometrical effect, the magnetic flux density at the edges along the length of the rods was about 30% of that at the center of rod face for a sufficiently large direct magnetizing current, while it was about 70% for an alternating magnetizing current. Thus, an alternating magnetizing current generates rather uniform magnetic flux density over the rods, except for the region on the face across about 10 mm from the edge. The attraction of the magnetic particle by the magnetic leakage field was nearly independent of the surface temperature of the billets up to $150^{\circ}C$. However, the temperature should have been limited below $60^{\circ}C$ for an effective fixing of gathered magnetic particles to the billet surface using methylene chloride. We also found that the amount of applied magnetic particles tremendously affected the detection capability.

  • PDF

A Study on the Ultrasonic Nondestructive Evaluation of Carbon/Carbon Composite Disks

  • Im, Kwang-Hee;Jeong, Hyun-Jo;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.320-330
    • /
    • 2000
  • It is desirable to perform nondestructive evaluation (NDE) to assess material properties and part homogeneity because the manufacturing of carbon/carbon brake disks requires complicated and costly processes. In this work several ultrasonic techniques were applied to carbon/carbon brake disks (322mm ad, 135mm id) for the evaluation of spatial variations in material properties that are attributable to the manufacturing process. In a large carbon/carbon disk manufactured by chemical vapor infiltration (CYI) method, the spatial variation of ultrasonic velocity was measured and found to be consistent with the densification behavior in CYI process. Low frequency (e.g., 1-5MHz) through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. Images based on both the amplitude and the time-of-flight of the transmitted ultrasonic pulse showed significant variation in the radial direction. The radial variations in ultrasonic velocity and attenuation were attributed to a density variation caused by the more efficient densification of pitch impregnation near the id and od and by the less efficient densification away from the exposed edged of the disk. Ultrasonic velocities in the edges of the disk. Ultrasonic velocities in the thickness direction were also measured as a function of location using dry-coupling transducers ; the results were consistent with the densification behavior. However, velocities in the in-plane directions (circumferential and radial) seemed to be affected more by the relative contents of fabric and chopped fiber, and less by the void content.

  • PDF

An Empirical Estimation Procedure of Concrete Compressive Strength Based on the In-Situ Nondestructive Tests Result of the Existing Bridges (공용중 교량 비파괴시험 결과에 기반한 경험적 콘크리트 압축강도 추정방법의 제안)

  • Oh, Hong-Seob;Oh, Kwang-Chin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.111-119
    • /
    • 2016
  • Rebound hammer test, SonReb method and concrete core test are most useful testing methods for estimate the concrete compressive strength of deteriorated concrete structures. But the accuracy of the NDE results on the existing structures could be reduced by the effects of the uncertainty of nondestructive test methods, material effects by aging and carbonation, and mechanical damage by drilling of core. In this study, empirical procedure for verifying the in-situ compressive strength of concrete is suggested through the probabilistic analysis on the 268 data of rebound and ultra-pulse velocity and core strengths obtained from 106 bridges. To enhance the accuracy of predicted concrete strength, the coefficients of core strength, and surface hardness caused by ageing or carbonation was adopted. From the results, the proposed equation by KISTEC and the estimation procedures proposed by authors is reliable than previously suggested equation and correction coefficient.

Frequency characteristic analysis on acoustic emission of mortar using cement-based piezoelectric sensors

  • Lu, Youyuan;Li, Zongjin
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.321-341
    • /
    • 2011
  • Acoustic emission (AE) monitoring was conducted for mortar specimens under three types of static loading patterns (cubic-splitting, direct-shear and pull-out). Each of the applied loading patterns was expected to produce a particular fracture process. Subsequently, the AEs generated by various fracture or damage processes carried specific information on temporal micro-crack behaviors of concrete for post analysis, which was represented in the form of detected AE signal characteristics. Among various available characteristics of acquired AE signals, frequency content was of great interest. In this study, cement-based piezoelectric sensor (as AE transducer) and home-programmed DEcLIN monitoring system were utilized for AE monitoring on mortar. The cement-based piezoelectric sensor demonstrated enhanced sensitivity and broad frequency domain response range after being embedded into mortar specimens. This broad band characteristic of cement-based piezoelectric sensor in frequency domain response benefited the analysis of frequency content of AE. Various evaluation methods were introduced and employed to clarify the variation characteristics of AE frequency content in each test. It was found that the variation behaviors of AE frequency content exhibited a close relationship with the applied loading processes during the tests.

Microfailure Mechanisms of Single-Fiber Composites Using Tensile/Compressive Fragmentation Techniques and Acoustic Emission (인장/압축 Fragmentation시험법과 음향방출을 이용한 단 섬유 복합재료의 미세파괴 메커니즘)

  • 김진원;박종만;윤동진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.159-162
    • /
    • 2000
  • Interfacial and microfailure properties of carbon fiber/epoxy matrix composites were evaluated using both tensile fragmentation and compressive Broutman tests with acoustic emission (AE). Amino-silane and maleic anhydride polymeric coupling agents were used via the dipping and electrodeposition (ED), respectively. Both coupling agents exhibited higher improvements in interfacial shear strength (IFSS) under tensile tests than compressive cases. However, ED treatment showed higher IFSS improvement than dipping case under both tensile and compressive test. The typical microfailure modes including fiber break, matrix cracking, and interlayer failure were observed during tensile test, whereas the diagonal slippage in fiber ends was observed during compressive test. For both the untreated and treated cases AE distributions were separated well under tensile testing. On the other hand, AE distributions were rather closer under compressive tests because of the difference in failure energies between tensile and compressive loading. Under both loading conditions, fiber breaks occurred around just before and after yielding point. Maximum AE voltage fur the waveform of carbon or basalt fiber breakage under tensile tests exhibited much larger than those under compressive tests.

  • PDF

Nondestructive Estimation of Mechanical Orthogonality of Human Trabecular Bone by Computed Tomography and Spherical Indentation Test

  • Bae Tae Soo;Lee Tae Soo;Choi Kuiwon
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.2
    • /
    • pp.117-122
    • /
    • 2005
  • The elastic modulus and the apparent density of the trabecular bone were evaluated from spherical indentation tests and Computed Tomography (CT) and their relationship was quantified. The femurs were prepared for trabecular bone analysis. Embedded with respect to their anatomical orientation, the transverse planes of the trabecular bone specimens were scanned at 1㎜ intervals using a CT scanner. The metaphyseal regions of femurs were sectioned with a diamond-blade saw, producing 8㎜ cubes. Using a specially made spherical indentation tester, the cubes were mechanically tested in the anterior-posterior (AP), medial-lateral (ML), and inferior-superior (IS) directions. After determination of modulus from the mechanical testing, the apparent densities of the specimens were measured. The results showed that the IS modulus was significantly greater than both the AP and ML moduli with the AP modulus greater than the ML modulus. This demonstrated that orthogonality was a structural characteristic of the trabecular bone. The power relationship between the modulus and the apparent density was also found to be statistically significant.

APPLICATION OF DIGITAL ULTRASONIC IMAGE CONSTRUCTION SYSTEM FOR THE DETECTION OF CRACKS IN WATER DISTRIBUTION SYSTEM

  • Lee, Hyun-Dong;Kwak, Phill-Jae;Shin, Hyeon-Jae;Jang, You-Hyun
    • Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.99-105
    • /
    • 2006
  • A digital ultrasonic image construction system was developed for the nondestructive detection of cracks in water distribution pipes. The system consists of PC based ultrasonic testing system and a scanning device. The PC based ultrasonic system has an ultrasonic pulse/receive board for the generation and reception of ultrasonic signals, an analogue to digital conversion board for the digitization of the received ultrasonic signals, and transducers for the ultrasonic sensors. Using this system, the digitized ultrasonic signals were properly constructed in accordance with the position information obtained by scanning device that moves an ultrasonic transducer along the outer surface of pipes. In the construction of the ultrasonic signals, signal processing concepts, such as spatial average and array concept, were considered to enhance the resolution of ultrasonic images of pipe wall. Using the developed system, crack detection experiments were performed in both laboratory and field, which shows promise for crack detection in the water distribution system.

Experimental Study on the On-line Monitoring of Offshore Structures Using Acoustic Emission Technology (음향방출법을 이용한 해양구조물의 온라인 감시에 관한 실험적 연구)

  • Won, Soon-Ho;Cho, Kyung-Shik
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.73-82
    • /
    • 1999
  • In this research, an experimental study is presented to check the possibilities of offshore structures monitoring using AE techniques. The underwater transducer and preamplifier are fabricated. And, it is proved that this unit can be used for the detection of AE in offshore structures. Wave propagation studies have shown that supplementary attenuations due to seawater are significantly reducing the detection range of the sensors. It excludes the possibility of offshore structures monitoring with a small number of sensors. We conclude that AE waves would be correctly detected for a path of about 3m. Tubular joints have been tested in air and underwater using simulated elastic wave. Ability of AE techniques to detect and locate cracks early in their evolution has been demonstrated. Several parameters of AE generation have been set in evidence. It has also been shown that crack development goes with an increase of AE parameter. Conclusively, it is shown that AE techniques can provide practical alternatives to present methods being used for inspection of deep-water offshore structures undergoing structural degradation due to fatigue crack growth.

  • PDF

Evaluation of the Residual Performance of Partially Charred Components of Old Wooden Structure I - Use of Ultrasonic Velocity and Testing of the Drilling Resistance -

  • Lee, Hyun-Mi;Hwang, Won-Joung;Lee, Dong-Heub;Kim, Hong Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.193-206
    • /
    • 2014
  • Residual performance of old architectural wood which has been damaged was measured using Nondestructive Evaluation (NDE). The wood Pole Tester was used to assess ultrasonic velocity inside wood and drill resistance was determined using an IML-resistograph. For ultrasonic measurements squared timber and circular timber's measurements were separately conducted with 1,300 m/s as the standard ultrasonic velocity. The standard wood samples divided into two parts; a non-sound area (below the standard), and a sound area (above the standard). Furthermore, schematization of wood was compared with results naked eye observation. The drilling resistance test was performed for both length and thickness direction in wood. The internal of the drilling was set at 30 cm (length direction), 5 cm (width direction) and 30cm (thickness direction). A non-sound area was defined as that 1) amplitude is below 20% and 2) carbonization and deterioration are related.

Comparison of Ultrasonic Velocities between Direct and Indirect Methods on 30 mm × 30 mm Spruce Lumber

  • OH, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.562-568
    • /
    • 2020
  • This study investigates the relationship between ultrasonic velocity and density in the direct method, the effect of distance between transducers in the indirect method, and the difference between the direct and indirect methods with transducers placed at a distance of 200 mm in nondestructive ultrasonic testing of spruce lumber. The direct method using 54 kHz ultrasonic transducers was applied to two planes, namely, radial section (LR) and tangential section (LT) of samples. The indirect method measurements were taken using the same transducers. Two velocities were measured at the top and bottom of the LT plane and at the two sides of the LR plane; the two values for each plane were averaged. The relationship between density and ultrasound velocity in the direct method demonstrated a positive correlation between the two variables. The difference between the two planes, LT and LR, was not statistically significant. Moreover, the distance between the transducers in the indirect method affected ultrasound velocity, with the ultrasonic velocity increasing as the distance between the transducers became larger. A transducer distance of 200 mm yielded a close approximation of the direct method results with a ratio of 0.87. Finally, no statistical evidence of a difference between the two planes in the indirect method was found. If the direct method, which requires access to two surfaces, is impractical, the indirect method can be applied.