• Title/Summary/Keyword: nondestructive testing technology

Search Result 345, Processing Time 0.021 seconds

Evaluation of the Thermal Degradation in Co-based Superalloy using High frequency Transducer of Scanning Acoustic Microscope (초음파현미경의 고주파 초음파 탐촉자를 이용한 코발트기 초내열합금강의 열화평가)

  • Park, Ik-Keun;Cho, Dong-Su;Kim, Yong-Kwon;Lim, Jae-Seang;Kim, Chung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.518-524
    • /
    • 2004
  • The feasibility of Y(z) curve method of scanning acoustic microscope using high frequency transducer was experimentally studied for assessment of the thermal degradation in Co-based superalloy. Thermal degradation was performed to simulate the microstructural changes in Co-based superalloy arising from long term exposure at high temperature. Longitudinal wave velocity measured by pulse echo method using 10MHz transducer and leaky surface acoustic wave (LSAW) velocity measured by V(z) curve method using 200MHE transducer were measured to investigate the effect on thermal degradation. Ultrasonic velocity decreased as the aging time increased in both ultrasonic waves. Moreover, the low frequency longitudinal wave velocity decreased a little. Otherwise, the high frequency LSAW velocity drastically decreased up to a maximum of 4.7% at the aging time of 4,000hours. A good correlation was found between LSAW and Vickers hardness. Consequently, V(z) curve method of SAM using high frequency transducer could be a potential tool for assessing thermal degradation.

TECHNIQUES FOR INTERGRANULAR CRACK FORMATION AND ASSESSMENT IN ALLOY 600 BASE AND ALLOY 182 WELD METALS

  • LEE, TAE HYUN;HWANG, IL SOON;KIM, HONG DEOK;KIM, JI HYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.102-114
    • /
    • 2015
  • Background: A technique developed to produce artificial intergranular stress corrosion cracks in structural components was applied to thick, forged alloy 600 base and alloy 182 weld metals for use in the qualification of nondestructive examination techniques for welded components in nuclear power plants. Methods: An externally controlled procedure was demonstrated to produce intergranular stress corrosion cracks that are comparable to service-induced cracks in both the base and weld metals. During the process of crack generation, an online direct current potential drop method using array probes was used to measure and monitor the sizes and shapes of the cracks. Results: A microstructural characterization of the produced cracks revealed realistic conformation of the crack faces unlike those in machined notches produced by an electrodischarge machine or simple fatigue loading using a universal testing machine. Conclusion: A comparison with a destructive metallographic examination showed that the characteristics, orientations, and sizes of the intergranular cracks produced in this study are highly reproducible.

Evaluation of thermal embrittlement in 2507 super duplex stainless steel using thermoelectric power

  • Gutierrez-Vargas, Gildardo;Ruiz, Alberto;Kim, Jin-Yeon;Lopez-Morelos, Victor H.;Ambriz, Ricardo R.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1816-1821
    • /
    • 2019
  • This research investigates the feasibility of using the thermoelectric power to monitor the thermal embrittlement in 2507 super duplex stainless steel (SDSS) exposed to a temperature between $280^{\circ}C$ and $500^{\circ}C$. It is well known that the precipitation of Cr-rich ${\alpha}^{\prime}$ phase as a result of the spinodal decomposition is the major cause of the embrittlement and the loss of corrosion resistance in this material. The specimens are thermally aged at $475^{\circ}C$ for different holding times. A series of mechanical testing including the tensile test, Vickers microhardness measurement, and Charpy impact test are conducted to determine the property changes with holding time due to the embrittlement. The mechanical strengths and ferrite hardness exhibit very similar trends. Scanning electron microscopy images of impactfractured surfaces reveal a ductile to brittle transition in the fracture mode as direct evidence of the embrittlement. It is shown that the thermoelectric power is highly sensitive to the thermal embrittlement and has an excellent linear correlation with the ferrite hardness. This paper, therefore, demonstrates that the thermoelectric power is an excellent nondestructive evaluation technique for detecting and evaluating the $475^{\circ}C$ embrittlement of field 2507 SDSS structures.

Evaluation of Trabecular Bone Strength Using Ultrasound (초음파를 이용한 연골(軟骨)의 강도 평가)

  • Han, Seung-Moo;Kim, Moon-Saeng
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.5
    • /
    • pp.373-380
    • /
    • 1998
  • The prediction of bone strength by ultrasound velocity and broadband ultrasound attenuation was examined. Ultrasound velocity and broadband attenuation were measured for sixty specimens of human trabecular bone. Samples were divided into two equal groups and loaded in compression at the strain rates of $0.0004\;s^{-1}$ and of $0.08\;s^{-1}$. The ultimate strength was determined for each specimen. Specimens tested at $0.08\;s^{-1}$ had a mean value of strength 63% higher than the specimens tested at $0.0004\;s^{-1}$. Ultrasound velocity and broadband attenuation were significantly associated with compressive strength at both strain rates. Mechanical strength was also correlated strongly with a linear combination of ultrasound velocity and broadband attenuation for both the low and high loading rates. The use of ultrasound parameters may provide good clinical means for assessing the resistance of trabecular bone to both low and high energy trauma.

  • PDF

Biomechanical Analysis and Evaluation Technology Using Human Multi-Body Dynamic Model (인체 다물체 동역학 모델을 이용한 생체역학 분석 및 평가 기술)

  • Kim, Yoon-Hyuk;Shin, June-Ho;Khurelbaatar, Tsolmonbaatar
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.494-499
    • /
    • 2011
  • This paper presents the biomechanical analysis and evaluation technology of musculoskeletal system by multi-body human dynamic model and 3-D motion capture data. First, medical image based geometric model and material properties of tissue were used to develop the human dynamic model and 3-D motion capture data based motion analysis techniques were develop to quantify the in-vivo joint kinematics, joint moment, joint force, and muscle force. Walking and push-up motion was investigated using the developed model. The present model and technologies would be useful to apply the biomechanical analysis and evaluation of human activities.

Study on Ultrasonic Birefringence by Uniaxial Stress in Axisymmetric Solids (축대칭 고체내부의 단축 응력에 의한 초음파 복굴절 특성 연구)

  • Kim, Noh-Yu;Chang, Young-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.336-342
    • /
    • 2006
  • Uniaxial stress in ail axisymmetric body is the simplest example of ultrasonic stress measurement. However, the birefringence theory cannot be applied for axisymmetric solids because the axisymmetric stress field in the body does not make shy velocity difference in SH waves propagating in the axisymmetric direction. Conventional ultrasonic technique using the time-of-flight method also needs ultrasonic lengths of the unstressed and stressed body, which is very impractical. In this paper, the birefringence effect in axisymmetric solids under uniaxial stress is formulated to evaluate the axial stress inside the solid without measuring tile ultrasonic length. Theoretical derivation for the birefringence characteristics in the axisymmetric solids is made using the longitudinal and shear waves instead of two horizontally polarized shear waves. Tension test is conducted for carbon-steel specimen to measure the birefringence coefficient and investigate the validity of the theory. It is observed from experimental results that the velocity difference in two differently polarized acoustic waves is proportional to the uniaxial stress in the axisymmetric solid with a good agreement with the theoretical value.

Development and Application of an Ultrasonic Gas Flowmeter (초음파 가스 유량계 개발과 활용)

  • Hwang, Won-Ho;Park, Sang-Gug;Jeong, Hee-Don;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.246-253
    • /
    • 2002
  • This paper describes the development and the field application of the ultrasonic gas flowmeter for accurate measurement of the volumetric flow rate of gases in a harsh environmental conditions in iron & steel making company. This ultrasonic flowmeter is especially suited for measuring LDG, COG, BFG gases produced in iron & steel making process. This is a transit time type ultrasonic flowmeter. We have developed the transmitting & receiving algorithm of ultrasonic wave and the ultrasonic signal processing algorithm to develope a transit time type ultrasonic flowmeter. We have evaluated the performance of ultrasonic flowmeter by the calibration system with Venturi type standard flowmeter. We has confirmed its reliability by extensive field tests for a year in POSCO, iron & steel making company. Now we have developed the commercial model of ultrasonic flowmeter and applied to the POSCO gas line.

Evaluation of Microstructure and Ductile-Brittle Transition Temperature in Thermally aged 2.25Cr-1Mo Steel by Electrical Resistivity Measurement (전기비저항을 이용한 2.25Cr-1Mo 강 열화재의 미세조직 및 연성-취성천이온도 평가)

  • Byeon, Jai-Won;Kwun, S.I.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.284-291
    • /
    • 2002
  • An attempt was made to evaluate the degree of aging degradation in thermally aged 2.25Cr-1Mo steel by electrical resistivity measurement. Artificial aging was performed to simulate the microstructural degradation in 2.25Cr-1Mo steel arising from long time exposure at $540^{\circ}C$. Microstructural parameter (amount of solid solution element), mechanical property (ductile-brittle transition temperature) and electrical resistivity were measured to investigate the mutual relationship among these parameters. Depletion of solid solution element(Mo and Cr) in matrix was detected after aging. The ductile-brittle transition temperature(DBTT) increased rapidly in the initial stage of aging and then saturated afterward. On the other hand, the electrical resistivity decreased rapidly in the beginning and then saturated in the later stage of aging.

Development of an Intelligent Ultrasonic Signature Classification Software for Discrimination of Flaws in Weldments (용접 결함 종류 판별을 위한 지능형 초음파 신호 분류 소프트웨어의 개발)

  • Kim, H.J.;Song, S.J.;Jeong, H.D.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.4
    • /
    • pp.248-261
    • /
    • 1997
  • Ultrasonic pattern recognition is the most effective approach to the problem of discriminating types of flaws in weldments based on ultrasonic flaw signals. In spite of significant progress in the research on this methodology, it has not been widely used in many practical ultrasonic inspections of weldments in industry. Hence, for the convenient application of this approach in many practical situations, we develop an intelligent ultrasonic signature classification software which can discriminate types of flaws in weldments based on their ultrasonic signals using various tools in artificial intelligence such as neural networks. This software shows the excellent performance in an experimental problem where flaws in weldments are classified into two categories of cracks and non-cracks. This performance demonstrates the high possibility of this software as a practical tool for ultrasonic flaw classification in weldments.

  • PDF

Measurement of Elastic Constants of Thin Metallic Foil by Guided Wave Dispersion Characteristics (유도초음파 분산 특성을 이용한 박판의 탄성계수 측정)

  • Lee, Dong-Jin;Cho, Youn-Ho;Jang, Kang-Won;Cho, Seung-Hyun;Ahn, Bong-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.41-46
    • /
    • 2012
  • As the development of MEMS/NEMS structure and application technology the demand for an assessment of the mechanical properties have increased. The mechanical properties are mainly evaluated by using tensile test or ultrasonic wave measurement. However, the new technology have been developed such as nano-indentation, guided wave method because they have a limitation in case of a thin plate and thin film. In the study, the guided wave velocities are measured by electromagnetic-acoustic transducer(EMAT), the material properties of thin metallic foils are obtained using optimization process of the theoretical and experimental group velocity of guided wave. The Young's modulus obtained by the optimization process(201.6 GPa), nano-indentation(207.0 GPa) and literature value(203.7 GPa) of a $50{\mu}m$ thick nickel thin plate shows good agreement within 3%.