• Title/Summary/Keyword: nondestructive testing technology

Search Result 345, Processing Time 0.025 seconds

Prediction of Failure Behavior in Composite Motor Cases by Acoustic Emission during Hydroproof Testing (수압보증시험시의 음향방출에 의한 복합재 연소관의 파괴거동 예측)

  • Song, Sung-Jin;Oh, Chi-Hwan;Jeong, Hyun-Jo;Rhee, Sang-Ho;Lim, Soo-Yong;Kim, Ho-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.2
    • /
    • pp.92-102
    • /
    • 1998
  • Prediction of failure behavior in filament-wound composite motor cases is one of the important issues for their reliable application. Acoustic emission during hydroproof testing of the cases is used to solve this problem. Based on the acoustic emission behavior, failure sites can be located successfully. The identification of failure modes is also possible using the distribution of acoustic emission amplitude. Due to the limitation in the number of samples, it is not possible to predict the final burst pressure of motor cases and the effect of impact damage on the final burst pressure.

  • PDF

Fabrication of 1-3 Piezo-composites with a "Dice & Fill" Method and Characterization of Their Piezoelectric Properties as a Function of Lateral Spatial Scale ("Dice와 fill" 방식을 이용한 1-3 압전복합재의 제조와 횡방향 단위 크기에 따른 압전특성 평가)

  • Kim, Young-Deog;Kim, Kwang-Il;Jeong, Woo-Cheol;Kim, Heung-Rak;Kim, Dong-Su
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.354-360
    • /
    • 2002
  • The piezoelectric composites had many advantages in comparison with conventional piezoelectric ceramics and piezopolymers for ultrasonic transducers used in NDT and in medical ultrasionic imaging. The electromechanical coupling coefficient should be high and the acoustic impedance should be low in these applications. However, the cross-coupling with spurious oscillations caused by laterally running plate waves exhibited complex motions in the surface of piezoelectric composites with coarse lateral spatial scale. The thickness mode electromechanical coupling coefficient of 1-3type of piezoelectric compoistes were 0.36 to 0.64, and the acoustic impedance of them were 9.8 to 22.7 MRayl. The lateral resonance frequency of 1-3 type piezoelectric composites shifted to high frequency region with decreasing lateral spatial scale.

Measurement of Thickness Distribution of $Si_3N_4$ Membrane Using Phase-Shifting Interferometer (위상이동 간섭계를 이용한 $Si_3N_4$ 박막의 두께 분포 측정)

  • Lee, Jung-Hyun;Jeong, Seung-Jun;Kang, Jeon-Woong;Jeon, Yun-Seong;Hong, Chung-Ki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.67-73
    • /
    • 2005
  • The thickness of a Si3N4 thin film with a 100m nominal thickness was measured by use of a Mach-Zehnder interferometer. The map of the phase-delay through the thin film was obtained by an interframe intensity-correlation-matrix method that could elliminate phase-shifting errors. After the spatial phase-shifting errors were treated with a least-squares method, the reference to surface of the phase map was estimated. The overall accuracy of the method was found to be 5nm.

Fabrication and Use of Corrosion Defect Specimens for Enhancement of ECT Reliability for Nuclear Steam Generator Tubing (증기발생기 전열관 와전류 검사의 신뢰성 향상을 위한 부식결함 시편의 제작 및 활용)

  • Hur, Do-Haeng;Choi, Myung-Sik;Lee, Doek-Hyun;Park, Jung-Am;Han, Jung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.451-456
    • /
    • 2000
  • The development of an integrated technology including fabrication of corrosion defect specimens and their practical use is needed to enhance the reliability of eddy current test for nuclear steam generator tubing. In this paper, the necessity and importance are presented from the viewpoint of the structural integrity, simulation specimens for real defects, and experiences from the destructive examination of pulled tubes. The models for several corrosion defects we also briefly introduced, with the scheme for their practical use.

  • PDF

Non-contact Ultrasonic Technique for the Evaluation Wall Thinning of the Plate (박판의 두께감육 평가를 위한 비접촉 유도초음파 검사 기법)

  • Park, Ik-Keun;Kim, Hyun-Mook;Kim, Tae-Hyung;Kim, Yong-Kwon;Cho, Yong-Sang;Song, Won-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.4
    • /
    • pp.287-293
    • /
    • 2005
  • Ultrasonic guided waves are gaining increasing attention for the inspection of platelike and rodlike structures. At the same time, inspection methods that do not require contact with the test piece are being developed for advanced applications. This paper capitalizes on recent advances in the areas of guided wave ultrasonics and noncontact ultrasonics to demonstrate a superior method for the nondestructive detection of defects thinning simulating hidden corrosion in thin aluminum plates. The proposed approach uses EMAT(electro-magnetic acoustic transducer) for the noncontact generation and detection of guided waves. Interesting features in the dispersive behavior of selected guided modes are used for the detection of plate thinning. It is shown that mode cutoff measurements provide a qualitative detection of defects thinning. Measurement of the mode group velocity can be also used to quantify depth thinning.

A Study on the Behavior of Ultrasonic Guided Wave Mode in a Pipe Using Comb Transducer (Comb Transducer를 이용한 파이프 내 유도초음파 모드의 거동에 관한 연구)

  • Park, Ik-Keun;Kim, Yong-Kwon;Cho, Youn-Ho;Ahn, Yeon-Shik;Cho, Yong-Sang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.142-150
    • /
    • 2004
  • A preliminary study of the behavior of ultrasonic guided wave mode in a pipe using a comb transducer for maintenance inspection of power plant facilities has been verified experimentally. The mode identification has been carried out in a pipe using the time-frequency analysis methods such as the wavelet transform(WT) and the short time Fourier transform (STFT), compared with theoretically calculated group velocity dispersion curves for longitudinal and flexural modes. The results are in good agreement with analytical predictions and show the effectiveness of using the time-frequency analysis method to identify the individual modes. It was found out that the longitudinal mode(0,1) is less affected by mode conversion compared with the other modes. Therefore, L(0,1) is selected as an optimal mode for the evaluation of the surface defect in a pipe.

Characterization of Residual Stress in Shot Peened Al 7075 Alloy Using Surface Acoustic Wave (표면파를 이용한 쇼트피닝된 Al 7075 합금의 잔류응력 평가)

  • Kim, Chung-Seok;Kim, Yong-Kwon;Park, Ik-Keun;Kwun, Sook-In
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.291-296
    • /
    • 2006
  • The residual stress in shot-peened Al 7075 alloy was evaluated using surface acoustic wave (SAW). Shot peening was conducted to produce a variation in the residual stress with the depth below the surface under a shot velocity of 30 m/s. The SAW velocity was measured from the V(z) curve using a scanning acoustic microscopy (SAM). The Vickers hardness profile from the surface showed a significant work hardening near the surface layer with a thickness of about 0.25 mm. As the residual stress became more compressive, the SAW velocity increased, whereas as the residual stress became more tensile, the SAW velocity decreased. The variation in the SAW velocity through the shot peened surface layer was in good agreement with the distribution of the residual stress measured by X-ray diffraction technique.

Microstructural Characterization for Structural Health Monitoring of Heat-Resisting Rotor Steels (로터용 내열강의 구조 건전성 모니터링을 위한 미세 조직 평가)

  • Kim, C.S.;Byeon, Jae-Won;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.177-183
    • /
    • 2008
  • The typical heat-resisting rotor steels such as 2.25CrMo, 9CrMo and 12CrW steel were experimentally studied in order to understand their materials degradation under high temperature and pressure during the long-term service, and then use the basic studies for the structural health monitoring. In order to monitor the materials degradation, it was conducted by the isothermal aging for 2.25CrMo steel, creep-fatigue for 9CrMo steel and creep for 12Cr steel with the incremental step test. The ultrasonic wave properties, electrical resistivity and coercivity were interpreted in relation to microstructural changes at each material and showed strong sensitivity to the specific microstructural evolution.

A Theoretical Study on Interface Characteristics of SiC Particulate Reinforced Metal Matrix Composite Using Ultrasonics (초음파를 이용한 입자강화 금속복합재료의 계면특성에 관한 이론적 연구)

  • Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.4
    • /
    • pp.9-17
    • /
    • 1994
  • It is well recognized recently that ultrasonic technique is one of the most widely used methods of nondestructive evaluation to characterize material properties of nonconventional engineering materials. Therefore it is very important to understand physical phenomenon on propagation behavior of elastic wave in these materials, which is directly associated with ultrasonic signals in the test. In this study, the theoretical analysis on multi-scattering of harmonic elastic wave due to the particulate with interface between matrix and fiber in metal matrix composites(MMCs) was done on the basis of Lax's quasi-crystalline approximation and extinction theorem. SiC particulate (SiCp) reinforced A16061-T6 composite material was chosen for this analysis. From this analysis, frequency dependences of phase velocity and amplitude attenuation of effective plane wave due to the change of volume fraction of SiC particulate were clearly found. It was also shown that the interface condition between matrix and fiber in MMCs gives a direct effect on the variation of phase velocity of plane wave in MMCs.

  • PDF

Detection of Micro-Crack Using a Nonlinear Ultrasonic Resonance Parameters (비선형 초음파공명 특성을 이용한 미세균열 탐지)

  • Cheong, Yong-Moo;Lee, Deok-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.369-375
    • /
    • 2012
  • In order to overcome the detection limit by the current nondestructive evaluation technology, a nonlinear resonant ultrasound spectroscopy(NRUS) technique was applied for detection of micro-scale cracks in a material. A down-shift of the resonance frequency and a variation of normalized amplitude of the resonance pattern were suggested as the nonlinear parameter for detection of micro-scale cracks in a materials. A natural-like crack were produced in a standard compact tension(CT) specimen by a low cycle fatigue test and the resonance patterns were acquired in each fatigue step. As the exciting voltage increases, a down-shift of resonance frequency were increases as well as the normalized amplitude decrease. This nonlinear effects were significant and even greater in the cracked specimen, but not observed in a intact specimen.