• Title/Summary/Keyword: nondestructive testing technology

Search Result 345, Processing Time 0.03 seconds

Nondestructive Measurement of the Coating Thickness in the Simulated TRISO-Coated Fuel Particle Using Micro-Focus X-ray Radiography (마이크로포커스 X-선 투과 영상을 이용한 모의 TRISO 핵연료 입자 코팅 층 두께 비파괴 측정)

  • Kim, Woong-Ki;Lee, Young-Woo;Park, Ji-Yeon;Park, Jung-Byung;Ra, Sung-Woong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.2
    • /
    • pp.69-76
    • /
    • 2006
  • TRISO(tri-isotropic)-coated fuel particle technology is utilized owing to its higher stability at a high temperature and Its efficient retention capability for fission products In the HTGR(high temperature gas-reeled reactor). The typical spherical TRISO fuel panicle with a diameter of about 1mm is composed of a nuclear fuel kernel and outer coating layers. The outer coating layers consist of a buffer PyC(pyrolytic carbon) layer, Inner PyC(1-PyC) layer, SiC layer, and outer PyC(O-PyC) layer Most of the Inspection Items for the TRTSO-coated fuel particle depend on destructive methods. The coating thickness of the TRISO fuel particle can be nondestructively measured by the X-ray radiography without generating radioactive wastel. In this study, the coaling thickness for the simulated TRISO-coated fuel particle with $ZrO_2$ kernel Instead of $%UO_2$ kernel was measured by using micro-focus X-ray radiography with micro-focus X-ray generator and flat panel detector The radiographic image was also enhanced by image processing technique to acquire clear boundary lines between coating layers. The coaling thickness wat effectively measured by applying the micro-focus X-ray radiography The inspection process for the TRISO-coated fuel particles will be improved by the developed micro-focus X-ray radiography and digital image processing technology.

Intelligence Package Development for UT Signal Pattern Recognition and Application to Classification of Defects in Austenitic Stainless Steel Weld (UT 신호형상 인식을 위한 Intelligence Package 개발과 Austenitic Stainless Steel Welding부 결함 분류에 관한 적용 연구)

  • Lee, Kang-Yong;Kim, Joon-Seob
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.4
    • /
    • pp.531-539
    • /
    • 1996
  • The research for the classification of the artificial defects in welding parts is performed using the pattern recognition technology of ultrasonic signal. The signal pattern recognition package including the user defined function is developed to perform the digital signal processing, feature extraction, feature selection and classifier selection. The neural network classifier and the statistical classifiers such as the linear discriminant function classifier and the empirical Bayesian classifier are compared and discussed. The pattern recognition technique is applied to the classification of artificial defects such as notchs and a hole. If appropriately learned, the neural network classifier is concluded to be better than the statistical classifiers in the classification of the artificial defects.

  • PDF

Time Delay Focusing of Ultrasonic Array Transducers on a Defect Using the Concept of a Time Reversal Process

  • Jeong, Hyun-Jo;Lee, Jeong-Sik;Lee, Chung-Hoon;Jun, Ghi-Chan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.550-556
    • /
    • 2009
  • In an application of a time reversal(TR) focusing of array transducer on a defect inside the test material, we employ a new time delay focusing technique based the TR process. In order to realize this idea, a multi-channel ultrasonic system is constructed capable of applying necessary time delays to each channel. The TR-based focusing procedure first measures the backscattered signals after firing one of the array elements. A phase slope method is then used to determine the time-of-flights of the backscattered signals received by all elements of the array. These time delays are used to adjust the time of excitation of the elements for transmission focusing on the defect. In addition to the TR focusing, the classical phased array focusing is also considered for comparison. Experimental results show that the TR-based time delay focusing produces much stronger backscattered signals than the phased array focusing, demonstrating the enhanced capability of the TR focusing.

Dielectric Cure Monitoring of Thermosetting Matrix Composites (열경화성 수지 복합재료의 유전 정화 모니터링)

  • Kim, Hyoung-Geun;Lee, Dai-Gil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.409-417
    • /
    • 2003
  • Cure monitoring can be used to improve the quality and productivity of thermosetting resin matrix composite products during their manufacturing process. In this work, the sensitivity of dielectrometry was improved by adequate separation the efforts of sensor and externals on the measured signal. A new algorithm to obtain the degree of cure during dielectric cure monitoring of glass/polyester and glass/epoxy composites was developed by employing a function of both temperature and dissipation factor, in which five cure monitoring parameters were used to calculate the degree of cure. The decreasing pattern of dissipation factor was compared with the relationships between the degree of cure and the resin viscosity. The developed algorithm might be employed for the in situ cure monitoring of thermosetting resin composites.

The Scanning Laser Source Technique for Detection of Surface-Breaking and Subsurface Defect

  • Sohn, Young-Hoon;Krishnaswamy, Sridhar
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.246-254
    • /
    • 2007
  • The scanning laser source (SLS) technique is a promising new laser ultrasonic tool for the detection of small surface-breaking defects. The SLS approach is based on monitoring the changes in laser-generated ultrasound as a laser source is scanned over a defect. Changes in amplitude and frequency content are observed for ultrasound generated by the laser over uniform and defective areas. The SLS technique uses a point or a short line-focused high-power laser beam which is swept across the test specimen surface and passes over surface-breaking or subsurface flaws. The ultrasonic signal that arrives at the Rayleigh wave speed is monitored as the SLS is scanned. It is found that the amplitude and frequency of the measured ultrasonic signal have specific variations when the laser source approaches, passes over and moves behind the defect. In this paper, the setup for SLS experiments with full B-scan capability is described and SLS signatures from small surface-breaking and subsurface flaws are discussed using a point or short line focused laser source.

Pipe Wall Thinning Evaluation through the Arrival Time Delay of A0 Lamb Wave Using Magnetostrictive Patch Transducers

  • Cho, Seung-Hyun;Kwon, Hyu-Sang;Ahn, Bong-Young;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.512-518
    • /
    • 2008
  • Guided wave technology is advantageous for fast inspection of pipe wall thinning since the guided wave propagates long distance. In this investigation, the method to evaluate gradual wall thinning in a pipe based on the arrival time delay with magnetostrictive patch transducers is presented. Low frequency A0 Lamb waves were generated and measured by the present transducer and it was applied to arrival time delay measurement experiments on a test pipe having gradual wall thinnings artificially manufactured. From experiments, consistent results that wall thinning increases the arrival time delay of A0 waves were obtained. Consequently, the feasibility of the magnetostrictive patch transducers to evaluate wall thinning was verified.

ISI NDE Total Support System for Korean Nuclear Power Plants (원전 가동중검사 종합지원체계)

  • Jeong, Yi-Hwan Peter
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.4
    • /
    • pp.321-329
    • /
    • 1998
  • Structural integrity of nuclear components is important for a safe operation of nuclear power plants. Therefore, nuclear power plants require to perform reliable, periodic inservice inspections. Korea Electric Power Company(KEPCO) operates the entire Korean nuclear power plants. Since nuclear power plant safety and the associated inservice inspection(ISI) are under the plant owner's responsibility, Korea Electric Power Research Institute(KEPRI), the R&D division of KEPCO, has established the ISI NDE Total Support system(TSS) for an efficient performance of ISI tasks, and initiated both key ISI NDE technology development program and traing & qualification system development program for an independent ISI operation. This paper describes details of these programs.

  • PDF

Feasibility Study on Detection of Crack in Bovine Incisor Using Active Thermography (보빈 치아 균열의 적외선 열화상 검사 가능성에 관한 실험적 연구)

  • Kim, Woo-Jae;Yang, Seung-Yong;Kim, No-Hyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.508-515
    • /
    • 2011
  • Bovine incisor was investigated using active infrared thermography(IRT) to visualize crack on bovine teeth. An artificial crack was carefully created in bovine incisor sample by compression load of universal tensile machine. While applying a sinusoidal heat wave to the cracked bovine incisor through halogen lamp, consecutive digital infrared images was captured from the sample surface at a frequency synchronized with heat excitation. Phase information of thermal image was calculated by four-point correlation method and processed to produce the phase image of bovine incisor. This phase image showed clearly the crack on the incisor, which was hardly detected in traditional passive thermography.

Corrosion Measurement Method Using Thermographical Information (열화상 정보를 이용한 부식률 예측기법)

  • Yun, Ju-Young;Chung, Lan;Roh, Young-Sook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.142-147
    • /
    • 2007
  • In order to measure corrosion level of steel reinforcement rebar which is inside reinforced concrete structure, infrared thermographic technique was employed. Experimental test parameters were four different ambient temperatures and various levels of corrosion states (0, 1, 3, 5, 7 and 10% of weight loss). After analysis of temperature distributions of concrete surface, the amount of heat flux from the concrete surface is directly proportional to the corrosion level which is inside of concrete.

Automated Technology for Pipelines Inspection Using Inpipe Robot (배관 로봇을 이용한 배관 검사 자동화 기술)

  • Roh, Se-Gon;Choi, Hyouk-Ryeol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.261-266
    • /
    • 2002
  • Up to now a wide variety of researches on inpipe robots for inspection have been introduced, but it still seems to be difficult to construct a robot providing mobility sufficient to navigate inside the complicated configuration of underground pipelines. The robot for the inspection of pipelines should freely move along the basic configuration of pipelines such as along horizontal or vertical pipelines. Moreover it should be able to travel along reducers and elbows, and especially the capability for steering in branches is essential to it. In this report, citical points and technologies in the development of the inpipe inspection robots are introduced and inpipe robots developed for last several years are introduced.