• Title/Summary/Keyword: nondestructive material evaluation

Search Result 200, Processing Time 0.033 seconds

A study on the evaluation of structural stability of masonry cultural heritage based on the characteristics of the back-fill material and the stiffness of the ground (뒤채움재의 물성과 지반의 강성에 따른 석축 문화재의 구조 안정성 평가 연구)

  • Lee, Ga-Yoon;Lee, Sung-Min;Kim, Jae Young;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.53-63
    • /
    • 2024
  • The cultural heritage of fortresses is often exposed to external elements, leading to significant damage from stone weathering and natural disasters. However, due to the nature of cultural heritage, dismantling and restoration are often impractical. Therefore, the stability of fortress cultural heritage was evaluated through non-destructive testing. The durability of masonry cultural heritages is greatly influenced by the physical characteristics of the back-fille material. Dynamic characteristics were assessed, and endoscopy was used to inspect internal fillings. Additionally, a finite element analysis model was developed considering the surrounding ground through elastic wave exploration. The analysis showed that the loss of internal fillings in the target cultural heritage site could lead to further deformation in the future, emphasizing the need for careful observation.

Possibility about Application and Interpretation of Surface Nondestructive X-ray Diffraction Method for Cultural Heritage Samples by Material (유형별 문화재 시료의 비파괴 표면 X-선 회절분석법 적용과 해석 가능성)

  • Moon, Dong Hyeok;Lee, Myeong Seong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.287-301
    • /
    • 2019
  • Preservation of the original form is the principle for conservation, management and utilization of cultural heritages. Thus, non-destructive analysis of these samples are important field of the conservation science. In this study, examined the applicability of nondestructive surface X-ray diffraction analysis (ND-XRD) for cultural heritage by materials (rock specimen, jade stone, pigment painted specimen, earthen artifact, metal artifact). In result, all type of sample is recorded suitable X-ray diffraction patterns for identifying mineral composition in case of surface condition with adequate particle size and arrangement. And diffraction pattern is reflected surface information than matrix. Therefore, ND-XRD is thought to be applicable not only mineral identification but also interpretation of manufacturing technique and alteration trend about layered sample (in horizontally or vertically). Whereas some exceptional diffraction patterns were recorded due to overlapping information on specific crystal planes. It caused by skip the sample treatment (powdering and randomly orientation). It could be advantageously used for mineral identification, such as preferred orientation of clay minerals. In contrast, irregular diffraction pattern caused by single crystalline effect is required careful evaluation.

Evaluation of Detectable Defect Size for Inner Defect of Pressure Vessel Using Laser Speckle Shearing Interferometry (레이저 스페클 전단간섭법을 이용한 압력용기 내부결함의 측정 가능한 결함 크기의 평가)

  • Kim, Kyeong-Suk;Seon, Sang-Woo;Choi, Tae-Ho;Kang, Chan-Geun;Na, Man-Gyun;Jung, Hyun-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.135-140
    • /
    • 2014
  • Pressure vessels are used in various industrial fields. If a defect occurs on the inner or outer surface of a pressure vessel, it may cause a massive accident. A defect on the outer surface can be detected by visual inspection. However, a defect on the inner surface is generally impossible to detect with visual inspection. Nondestructive testing can be used to detect this type of defect. Laser speckle shearing interferometry is one nondestructive testing method that can optically detect a defect; its advantages include noncontact, full field, and real time inspection. This study evaluated the detectable size for an internal defect of a pressure vessel. The material of the pressure vessel was ASTM A53 Gr.B. The internal defect was detected when the pressure vessel was loaded by internal pressure controlled by a pneumatic system. The internal pressure was controlled from 0.2 MPa to 0.6 MPa in increments of 0.2 MPa. The results confirmed that an internal defect with a 25 % defect depth could be detected even at 0.2 MPa pressure variation.

Evaluation of Young's Modulus of a Cantilever Beam by TA-ESPI (TA-ESPI에 의한 외팔보의 탄성계수 측정)

  • Lee H.S.;Kim K.S.;Kang K.S.;Jung H.C.;Yang S.P.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1115-1119
    • /
    • 2005
  • The paper proposes the elastic modulus evaluation technique of a cantilever beam by vibration analysis based on time-average electronic speckle pattern interferometry (TA-ESPI) with non-contact and nondestructive and Euler-Bernoulli equation. General approaches for the measurement of elastic modulus of thin film are Nano indentation test, Bulge test and Micro-tensile test and so on. They each have strength and weakness in the preparation of test specimen and the analysis of experimental result. ESPI has been developed as a common measurement method for vibration mode visualization and surface displacement. Whole-field vibration mode shape (surface displacement distribution) at a resonance frequency can be visualized by ESPI. And the maximum surface displacement distribution from ESPI is a clue to find the resonance frequency at each vibration mode shape. And the elastic modules of test material can be easily estimated from the measured resonance frequency and Euler-Bernoulli equation. The TA-ESPI vibration analysis technique is able to give the elastic modulus of materials through the simple processing of preparation and analysis.

  • PDF

Optimum Selection of the Advanced Indentation Technique for the Evaluation of Non-equip-biaxial Residual Stress in Steel Materials (철강 재료의 2축 비등방향 잔류응력 평가를 위한 연속압입시험의 최적조건 선정)

  • Yu S.J.;Kim J.H;Park J.S.;Kwon D.I.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1774-1779
    • /
    • 2005
  • Most of materials receive force in using, therefore, the characteristics of materials must be considered in system design not to occur deformation or destruction. Mechanical properties about materials can be expressed as responsible level of material itself under the exterior operation. Main mechanical properties is strength, hardness, ductility and stiffness etc. Currently, among major measure facilities to measure such mechanical properties, advanced indentation technique has focused in industrial areas as reason of nondestructive and easy applications for mechanical tensile properties and evaluation of residual stress of materials. This study is to find the optimum experimental condition about residual stress advanced indentation technique for accurate analysis of the welded joint of steel materials through indentation load-depth curve obtained from cruciform specimen experiment. Optimum selection was applied to the welded joint of real steel materials to give non-equi-biaxial stress state and compared with general residual stress analyzing method for verification.

  • PDF

Defect Evaluation of Optical Lens by Resonant Ultrasound Spectroscopy (공명초음파분광법을 활용한 광학기기용 렌즈의 결함평가)

  • 김성훈;백경윤;김영남;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1491-1495
    • /
    • 2004
  • In this paper, resonant ultrasound spectroscopy(RUS) was used to determine the natural frequency of a spherical and a aspherical lens. The objective of the paper is to evaluate defect and shape error by using nondestructive evaluation method with Resonant Ultrasound Spectroscopy(RUS). The principle of RUS is that the mechanical resonant frequency of the materials depends on density, and the coefficient of elasticity. We evaluated existence of flaws through comparison with resonant frequency of a spherical and a aspherical lens. The spherical glass lenses were made of BK-7 glass, one's diameter in 2mm and 5mm. The polished spherical glass lenses had no deflection or a deflection below 2.0${\mu}{\textrm}{m}$. Also, The aspherical lens were made of same material and ones diameter in 7mm and thickness in 3.4mm. In the experiment, we were performed to investigate relationship between frequency measuring parameter($\beta$) and mass of each specimens. The difference between resonant frequency and mode of aspherical glass lens which has no defect was distinguished from aspherical glass lens which has some defects.

  • PDF

The Evaluation of Residual Stresses in the Welded Joint of Steel Materials by the Optimum Selection of the Advanced Indentation Technique (연속압입시험의 최적조건 선정을 통한 철강재료의 용접부 잔류응력 평가)

  • Yu, Seung-Jong;Kim, Joo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.118-126
    • /
    • 2007
  • Most of materials receive forces in use so that the characteristics of materials must be considered in system design to prevent deformation or destruction. Mechanical properties of materials can be expressed as responsible level of material itself under the exterior operation. Main mechanical properties are strength, hardness, ductility and stiffness. Currently, among major measure facilities to measure the mechanical properties, advanced indentation technique has important use in industrial areas due to nondestructive and easy applications for mechanical tensile properties and evaluation of residual stress of materials. This study is to find the optimum experimental condition about residual stress advanced indentation technique for accurate analysis of the welded joint of steel materials through indentation load-depth curve obtained from cruciform specimen experiment. Optimum selection was applied to the welded joint of real steel materials to find out non-equi-biaxial stress state and the results were compared with general residual stress analyzing method fur verification.

Development of On-line Life Monitoring System Software for High-temperature Components of Power Boilers (보일러 고온요소의 수명 감시시스템 소프트웨어 개발)

  • 윤필기;정동관;윤기봉
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.171-176
    • /
    • 1999
  • Nondestructive inspection and accompanying life analysis based on fracture mechanics were the major conventional methods for evaluating remaining life of critical high temperature components in power plants. By using these conventional methods, it has been difficult to perform in-service inspection for life prediction. Also, quantitative damage evaluation due to unexpected abrupt changes in operating temperature was almost impossible. Thus, many efforts have been made for evaluating remaining life during operation of the plants and predicting real-time life usage values based on the shape of structures, operating history, and material properties. In this study, a core software for on-line life monitoring system which carries out real-time life evaluation of a critical component in power boiler(high temperature steam headers) is developed. The software is capable of evaluating creep and fatigue life usage from the real-time stress data calculated by using temperature/stress transfer Green functions derived for the specific headers and by counting transient cycles. The major benefits of the developed software lie in determining future operating schedule, inspection interval, and replacement plan by monitoring real-time life usage based on prior operating history.

  • PDF

Material Characteristics and Nondestructive Deterioration Assessment for the Celestial Chart Stone, Korea (천상열차분야지도 각석의 재질특성과 비파괴 훼손도 평가)

  • Yoo, Ji Hyun;Lee, Myeong Seong;Choie, Myoungju;Ahn, Yu Bin;Kim, Yuri
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.207-222
    • /
    • 2018
  • Celestial Chart Stones (original and reproduction) in the National Palace Museum are representative scientific cultural heritage of Korea. Material analysis and nondestructive deterioration assessment were conducted for long-term preservation of these stones. Material analysis revealed that the original was composed of slate and the reproduction was made of dolostone. The original consists of quartz, mica, dolomite minerals, while the reproduction was made up of dolomite, calcite and forsterite. Major deterioration factors of the original stone were cracks and breakouts. In case of the reproduction, scratches and artificial materials were mainly observed. The green and black surface contaminants present at the sides and back of the two celestial chart stones were interpreted as resin-based paint materials. The physical property evaluation using ultrasonic velocity showed a low velocity in the upper left side of the original, while the front right side of the reproduction showed a weak property. Meanwhile, the To-Tc method using ultrasonic velocity was applied to major cracks that impede stability of the original. As a result, it has been calculated that the beginning and the center of the crack are the deepest.

Fabrication Process and Reliability Evaluation of Shape Memory Alloy Composite (형상기억복합재료의 저조공정 및 신뢰성 평가)

  • Lee, Jin-Kyung;Park, Young-Chul;Lee, Kyu-Chang;Choi, Il-Kook;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.6
    • /
    • pp.634-641
    • /
    • 2001
  • Shape memory alloy has been used to improve the tensile strength of composite by the occurrence of compressive residual stress in matrix using its shape memory effect. In order to fabricate shape memory alloy composite, TiNi alloy and A16061 were used as reinforcing material and mix, respectively. In this study, TiNi/A16061 shape memory alloy composite was made by using hot press method. However, the specimen fabricated by this method had the bonding problem at the boundary between TiNi fiber and Al matrix when the load was applied to it. A cold rolling was imposed to the specimen to improve the bonding effect. It was found that tensile strength of specimen subjected to cold rolling was more increased than that of specimen which did not underwent cold rolling. In addition, acoustic emission technique was used to quantify the microscopic damage behavior of cold rolled TiNi/A16061 shape memory alloy composite at high temperature.

  • PDF