• Title/Summary/Keyword: nondestructive material evaluation

Search Result 200, Processing Time 0.022 seconds

Development of rotational pulse-echo ultrasonic propagation imaging system capable of inspecting cylindrical specimens

  • Ahmed, Hasan;Lee, Young-Jun;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.657-666
    • /
    • 2020
  • A rotational pulse-echo ultrasonic propagation imager that can inspect cylindrical specimens for material nondestructive evaluations is proposed herein. In this system, a laser-generated ultrasonic bulk wave is used for inspection, which enables a clear visualization of subsurface defects with a precise reproduction of the damage shape and size. The ultrasonic waves are generated by a Q-switched laser that impinges on the outer surface of the specimen walls. The generated waves travel through the walls and their echo is detected by a Laser Doppler Vibrometer (LDV) at the same point. To obtain the optimal Signal-to-Noise Ratio (SNR) of the measured signal, the LDV requires the sensed surface to be at a right angle to the laser beam and at a predefined constant standoff distance from the laser head. For flat specimens, these constraints can be easily satisfied by performing a raster scan using a dual-axis linear stage. However, this arrangement cannot be used for cylindrical specimens owing to their curved nature. To inspect the cylindrical specimens, a circular scan technology is newly proposed for pulse-echo laser ultrasound. A rotational stage is coupled with a single-axis linear stage to inspect the desired area of the specimen. This system arrangement ensures that the standoff distance and beam incidence angle are maintained while the cylindrical specimen is being inspected. This enables the inspection of a curved specimen while maintaining the optimal SNR. The measurement result is displayed in parallel with the on-going inspection. The inspection data used in scanning are mapped from rotational coordinates to linear coordinates for visualization and post-processing of results. A graphical user interface software is implemented in C++ using a QT framework and controls all the individual blocks of the system and implements the necessary image processing, scan calculations, data acquisition, signal processing and result visualization.

Evaluation of Suitability of Non-Standardized Test Block for Ultrasonic Testing (비규격 초음파 탐상용 표준시험편의 사용안전성 평가)

  • Kwon, Ho-Young;Lim, Jong-Ho;Kang, Sei-Sun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.431-437
    • /
    • 2000
  • Standard Test Block(STB) for UT(Ultrasonic Testing) is a block approved by authoritative for material, shape and quality. STB is used for characteristic tests, sensitivity calibration and control of the time base range of UT inspection devices. The material, size and chemical components of STB should be strictly controled to meet the related standards such as ASTM and JIS because it has an effect upon sensitivity, resolution and reproductivity of UT. The STBs which are not approved are sometimes used because the qualified STBs are very expensive. So, the purpose of this study is to survey the characteristics, quality and usability of Non-Standardized Test Blocks. Non-Standardized Test Blocks did not meet the standard requirements in size or chemical components, and ultrasonic characteristics. Therefore if the Non-Standardized Test Blocks are used without being tested, it's likely to cause errors in detecting the location and measuring the size of the defects.

  • PDF

Application of Continuous Indentation Technique for Reliability Evaluation in Power Plant Facilities (발전설비 주요배관 신뢰도 확보를 위한 연속압입시험 적용)

  • Park, Sang-Ki;Ahn, Yeon-Shik;Jung, Gye-Jo;Cho, Yong-Sang;Choi, Yeol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.158-162
    • /
    • 2004
  • Reliability of welded structures in power plant facilities is very important, and their reliability evaluation requires exact materials properties. But, the conventional PQR (Procedure Qualification Record) can hardly reflect the real material properties in the field because the test is only done on specimens with simulated welding. Therefore, a continuous indentation technique is proposed in this study for simple and non-destructive testing of in-field structures. This test measures the indentation load-depth curve during indentation and analyzes the mechanical properties such as the yield strength, tensile strength and work hardening index. This technique has been applied to evaluate the tensile properties of the weldment in the main steam pipe and hot reheater pipe in power plants under construction and in operation.

Evaluation of Material Degradation Using Electrical Resistivity Method (전기비저항법을 이용한 재료열화 평가)

  • Seok, Chang-Seong;Kim, Dong-Jung;Bae, Bong-Guk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2995-3002
    • /
    • 2000
  • The remaining life estimation for the aged components in power plants as well as chemical plants are very important beacuse mechanical properties of the components are degraded with time of service exposure in high temperature. Since it is difficult to take specimens from the operating components to evaluate mechanical properties of components nondestructive techniques are needed to estimate the degradation. In this study, test materials with 4 different degradation levels were prepared by isothermal aging heat treatment at 630$\^{C}$. And the DC potential drop method and destructive methods such as tensile, K(sub)IC and hardness tests were used in order to evaluate the degradation of 1-Cr-1Mo-0.25V steels. The objective of this study is to investigate the possibility of the application of DCPD method to estimated the material degradation, and to analyse the relationship between the electrical relationship between the electrical resistivity and the degree material degradation.

Degradation Damage Evaluation for Turbine Structural Components by Electrochemical Reactivation Polarization Test (전기화학적 재활성화 분극시험에 의한 터빈부재의 열화손상 평가)

  • Kwon, Il-Hyun;Baek, Seung-Se;Lyu, Dae-Young;Yu, Hyo-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1241-1249
    • /
    • 2002
  • The extent of materials deterioration can be evaluated accurately by mechanical test such as impact test or creep test. But it is almost impossible to extract a large test specimen from in-service components. Thus material degradation evaluation by non-destructive method is earnestly required. In this paper, the material degradation for virgin and several aged materials of a Cr-Mo-V steel, which is an candidated as structural material of the turbine casing components for electric power plant, is nondestructively evaluated by reactivation polarization testing method. And, the results obtained from the test are compared with those in small punch(SP) tests recommended as a semi-nondestructive testing method using miniaturized specimen. In contrast to the aged materials up to 1,000hrs which exhibit the degradation behaviors with increased ${\Delta}[DBTT]_{SP}$, the improvement of mechanical property can be observed on the 2,000hrs and 3,000hrs aged materials. This is because of the softening of material due to the carbide precipitation, the increase of ferritic structures and the recovery of dislocation microstructure by long-time heat treatment. The reactivation rates($I_R/I_{Crit},\;Q_R/Q_{Crit}$) calculated by reactivation current densityt ($I_R$) and charge($Q_R$) in the polarization curves exhibit a good correlation with ${\Delta}[DBTT]_{SP}$ behaviors.

Evaluation of Ultrasonic Nonlinear Characteristics in Artificially Aged Al6061-T6 (인공시효된 Al6061-T6의 초음파 비선형 특성 평가)

  • Kim, Jongbeom;Lee, KyoungJun;Jhang, Kyung-Young;Kim, ChungSeok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.220-225
    • /
    • 2014
  • Generally, the nonlinearity of ultrasonic waves is measured using a nonlinear parameter ${\beta}$, which is defined as the ratio of the second harmonic's magnitude to the power of the fundamental frequency component after the ultrasonic wave propagates through a material. Nonlinear parameter ${\beta}$ is recognized as an effective parameter for evaluating material degradation. In this paper, we evaluated the nonlinear parameter of Al6061-T6 which had been subjected to an artificial aging heat treatment. The measurement was using the transmitted signal obtained from contact-type transducers. After the ultrasonic test, a micro Vickers hardness test was conducted. From the result of the ultrasonic nonlinear parameter, the microstructural changes resulting from the heat treatment were estimated and the hardness test proved that these estimates were reasonable. Experimental results showed a correlation between the ultrasonic nonlinear parameter and microstructural changes produced by precipitation behavior in the material. These results suggest that the evaluation of mechanical properties using ultrasonic nonlinear parameter ${\beta}$ can be used to monitor variations in the mechanical hardness of aluminum alloys in response to an artificial aging heat-treatment.

Feasibility study of wide-band low-profile ultrasonic sensor with flexible piezoelectric paint

  • Li, Xin;Zhang, Yunfeng
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.565-582
    • /
    • 2008
  • This paper presents a feasibility study of flexible piezoelectric paint for use in wide-band low-profile surface-mount or embeddable ultrasonic sensor for in situ structural health monitoring. Piezoelectric paint is a piezoelectric composite with 0-3 connectivity. Because of its ease of application, piezoelectric paint can be readily fabricated into sensing element with complex pattern. This study examines the characteristics of piezoelectric paint in acoustic emission signal and ultrasonic guided wave sensing. A series of ultrasonic tests including pitch catch and pencil break tests were performed to validate the ultrasonic wave sensing capability of piezoelectric paint. The results of finite element simulation of ultrasonic wave propagation, and acoustic emission generated by a pencil lead break on an aluminum plate are also presented in this paper along with corresponding experimental data. Based on the preliminary experimental results, the piezoelectric paint appears to offer a promising sensing material for use in real-time monitoring of crack initiation and propagation in both metallic and composite structures.

Prediction of Fracture Appearance Transition Temperature(FATT) to Steel by Ultrasonic and Barkhausen Noise Method (초음파와 Barkhausen Noise에 의한 강의 연.취성천이온도 예측)

  • Nam, Young-Hyun;Seong, Un-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1215-1222
    • /
    • 1999
  • It is advantageous to use an NDE method to assess the mechanical properties of materials since the conventional method is time-consuming and sometimes requires cutting of sample from the material/component. This paper shows that the ultrasonic and the Barkhausen noise(BHN) methods can be used to accurately characterize forged reactor vessels. The attenuation coefficient of the ultrasonic wave was changed with heat treatment temperature and condition[as-quenched, tempered, PWHT]. The RMS[root mean square] voltage of Barkhausen noise depended on heat treatment temperature and conditions. The fracture appearance transition temperature(FATT) can be predicted using nondestructive evaluation methods.

Evaluation on Degradation of Cr-Mo-V Steel by Micro-Vickers Hardness Measurement (미소 비커스경도에 의한 Cr-Mo-V강의 경년열화 평가)

  • Kim, Jung-Ki;Nahm, Seung Hoon;Kim, Amkee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.1
    • /
    • pp.54-61
    • /
    • 1998
  • Since Cr-Mo-V steel has excellent fracture and creep properties at elevated temperature, they are extensively used as steam turbine components such as the turbine rotor. However, the turbine rotor steel used to suffer material degradation during long term service. Therefore, the assessment of the safety and residual life of the turbine rotor is periodically required during service. One of the most convenient techniques for that is the hardness method mainly due to its simplicity and nondestructive characteristics. In this research, six specimens with different aging times of turbine rotor steel were artificially prepared by an isothermal heat treatment at $630^{\circ}C$. The micro Vickers hardnesses of specimens were measured at room temperature. The relationships between the fracture properties and the hardness ratio were investigated. And also an indirect method to evaluate the residual life of degraded turbine rotor was proposed based on the micro Vickers hardness measurement.

  • PDF

The Frequency Characteristics of Elastic Wave by Crack Propagation of SiC/SiC Composites

  • Kim, J.W.;Nam, K.W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.110-114
    • /
    • 2012
  • We studied on the nondestructive evaluation of the elastic wave signal of SiC ceramics and SiC/SiC composite ceramics under monotonic tensile loading. The elastic wave signal of cross and unidirectional SiC/SiC composite ceramics were obtained by pencil lead method and bending test. It was applied for the time-frequency method which used by the discrete wavelet analysis algorithm. The time-frequency analysis provides time variation of each frequency component involved in a waveform, which makes it possible to evaluate the contribution of SiC fiber frequency. The results were compared with the characteristic of frequency group from SiC slurry and fiber. Based on the results, if it is possible to shift up and design as a higher frequency group, we will can make the superior material better than those of exiting SiC/SiC composites.

  • PDF