• Title/Summary/Keyword: noncrystalline

Search Result 32, Processing Time 0.024 seconds

Influence of Cooling Rate and Alloy Composition on The Microstructural Evolution of Al-Ag Eutectic System ($Al-Ag_2Al$ 공정계 합금의 조성 및 냉각 속도에 따른 미세조직 고찰)

  • Sohn, Sung-Woo;Park, Jin-Man;Kim, Tae-Eung;Lim, Ka-Ram;Kim, Won-Tae;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.29 no.2
    • /
    • pp.64-69
    • /
    • 2009
  • In the present study the effect of cooling rate during solidification on the microstructural characteristics of Al-xAg (x = 31, 33, 35 at.%) in-situ binary eutectic composites has been investigated. To provide a wide range of cooling rate three different casting techniques, i.e. conventional casting, injection casting, and melt spinning have been used. The observed microstructure is very much dependent on the cooling rate. The fcc ${\alpha}$-Al and hcp $Ag_2Al$ phases exhibits an orientation of (111)Al//(0001)$Ag_2Al$, [1-10]Al//[11- 20]$Ag_2Al$. The microstructure of the melt-spun samples contains Widmanstatten structure resulting from solid-state transformation and nano scale two-phase structure resulting from solid-state phase separation. The microstructure of injection-cast samples contains eutectic structure and solid state phase-separated structure. On the other hand, conventional-cast samples exhibit a microstructure consisted of plate-type eutectic structure.

Optical characteristics of Se thin film fabricated by EBE method (전자빔 증착법으로 제작한 Se박막의 광학적 특성)

  • 정해덕;이기식
    • Electrical & Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.445-449
    • /
    • 1996
  • Structural and optical characteristics in Se thin film fabricated by EBE method had been studied. Se thin film was deposited with noncrystalline until substrate temperature of >$100^{\circ}C$ Color of its surface had red genealogy, and its optical energy band gap was about 2.45 eV. But Se film was grown with monoclinic at substrate temperature of over >$150^{\circ}C$ Also, color of its surface had gray genealogy, and its optical energy band gap was about 2.31 eV. Finally, after heat-treatment at >$150^{\circ}C$ for 15 min with substrate temperature of >$100^{\circ}C$ noncrystalline Se was proved to be hexagonal, and color of its surface had dark gray genealogy, and its optical energy band gap was about 2.06 eV. From the results, it was known that Se thin film for photoelectric device with the lowest optical energy band gap was accepted from hexagonal structure.

  • PDF

Al계 준결정 분말의 제조 및 응용

  • Kim, W. T.;Kim, D.H.;Lee, S.M.;E.Fleury;H.S. Ahn
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.07a
    • /
    • pp.133-155
    • /
    • 2002
  • 1. Quasicrystalline powders shows exotic physical and mechanical p properties 2. Applications: structural application: strengthening particles for composites C Coating application: wear resistance, low friction coefficient 3. For thermal spaying: material loss during process should be c considered to control chemical composition of deposit 4. Friction coefficient is strongly dependent on contact geometry F Friction coefficient from pin on plate: 0.1-0.2 Friction coe야icient from flat on plate: about 0.46. 5. Quasicrystalline materials show lower friction coefficient but higher w wear rate than corresponding values of $Cr_20_3$ coated layer. 6. Amorphous coating seems to be promising

  • PDF

KOH Hydrothermal Synthesis of Zeolites from Hadong Kaolin (KOH수열 처리에 의한 하동카오린으로부터 Zeolite의 합성)

  • 이무강;신현무;임경천
    • Journal of Environmental Science International
    • /
    • v.12 no.12
    • /
    • pp.1321-1327
    • /
    • 2003
  • Two different kinds of cases, with and without addition of noncrystalline silica to the Hadong kaolin were studied to obtain useful information on the synthesis of zeolite. The research was carried out to investigate the formation area and the crystalized degree of zeolite according to a synthetic time, the water content of raw material mixture, KOH concentration, and stirring intensity. In the case of without addition of noncrystalline silica to the Hadong kaolin and the low concentration range of KOH, the structure of the kaolin was not changed. However, when the mole ratio of K2O/SiO$_2$ in natural kaolin was increased, Linde-L zeolite and unknown structure of kaolins, U-1 and U-2 were produced. While in the high concentration range of KOH, the unknown structure of kaolins, U-6 and U-2, were produced and the production rate of U-6 was increased with the increased of K2O/SiO$_2$ mole ratio. In the case of with addition of noncrystalline silica to the Hadong kaolin and treatment with KOH hydrothermal processing, ZSM-5, ZSM-35, and Linde-L zeolites and the mixture of unknown structure of zeolites, U-1, U-2, U-3, and U-4, were obtained. Both cases demonstrated that the synthesis of zeolite from the Hadong kaolin was highly influenced by KOH concentration of raw material mixture.

A Study on the Preparation of MgO-Al2O3-SiO2 System Ceramic Powders by Spray Pyrolysis Method (분무열분해법에 의한 MgO-Al2O3-SiO2계 화합물의 분체합성 및 그 특성)

  • 박정현;박찬욱;조경식
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.397-407
    • /
    • 1988
  • Spinel, mullite and cordierite powders have synthesized from Mg(NO3)2.6H2O, Al(NO3).9H2O and SiCl4 solution by spray pyrolysis method. The two-fluid nozzle was used as an atomizer. The powders of sinel and mullite were synthesized above 80$0^{\circ}C$, but the cordierite composition was noncrystalline for all synthersizing temperature. Those noncrystalline powders were crystallized to $\alpha$-cordierite during calcining at 130$0^{\circ}C$ for 2hrs. The synthesized spinel, mullite and cordierite powders seem to be consisted of agglomerated hollow spherical particles. For all powders, the particle size ranged from submicron to about 3${\mu}{\textrm}{m}$ and mean particle size was about 1.4${\mu}{\textrm}{m}$ in diameter. The specific surface area values of spinel, mullite and cordierite powders were maximum for powders prepared at 100$0^{\circ}C$, and those were 45.9, 25.8 and 13.6$m^2$/gr, respectively.

  • PDF

A study on structural characteristics of Se thin film by fabrication temperature (제작 온도에 따른 Se박막의 구조적 특성에 관한 연구)

  • 정운조;조재철;박계춘;정해덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.1.1-5
    • /
    • 1996
  • Structural characteristics in Se thin film fabricated by EBE method had been studied. Se thin film was deposited with noncrystalline until substrate temperature of 100$^{\circ}C$. But Se film was grown with monoclinic at substrate temperature of over 150$^{\circ}C$. Lattice constants of it were as follow: a=12.76[${\AA}$], b=9.15[${\AA}$], c=10.4[${\AA}$]. Finally, after heat-treatment at 150$^{\circ}C$ for 15 min with substrate temperature of 100$^{\circ}C$, noncrystalline Se was proved to be hexagonal. Lattice constants of it were as follow: a=4.27[${\AA}$], c=4.83[${\AA}$].

Quasicrystals And Related Approximant Phases in Mg-Zn-Y (Mg-Zn-Y 합금에서 준결정 및 준결정 유사상)

  • Park, Eun-Soo;Ok, Jae-Bum;Kim, Won-Tae;Kim, Do-Hyang
    • Applied Microscopy
    • /
    • v.32 no.1
    • /
    • pp.31-37
    • /
    • 2002
  • As-cast microstructure of Mg-rich $Mg_{68}Zn_{28}Y_4$ has been investigated by a detailed transmission electron microscopy. The as-cast $Mg_{68}Zn_{28}Y_4$ alloy consisted of three different types of phases: $10{\sim}20{\mu}m$ size primary solidification phase, dendritic phase grown from the primary phase and a eutectic structure formed at the later stage of solidification. The primary solidification phase has an icosahedral structure with a large degree of phason strain. 1/1 rhombohedral approximant phase with lattice parameters: $a=27.2{\AA}\;and\;{\alpha}=63.43^{\circ}$ is first observed in Mg-Zn-Y system. The rhombohedral structure can be obtained by introducing phason strain in the six dimensional face centered hyper-cubic lattice. The decagonal phase nucleates with orientation relationship with the icosahedral phase, and $Mg_4Zn_7$ nucleates with orientation relationship with the decagonal phase, indicating a close structural similarity between the three phases. Gradual depletion of Y during solidification plays an important role in heterogeneous nucleation of decagonal and $Mg_4Zn_7$ phases from icosahedral and decagonal phases respectively.

Analysis of Twin in Mg Alloys Using Electron Backscatter Diffraction Technique

  • Lee, Jong Youn;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.44 no.1
    • /
    • pp.34-39
    • /
    • 2014
  • Electron backscatter diffraction (EBSD) is widely used for quantitative microstructural analysis of the crystallographic nature of variety of materials such as metals, minerals, and ceramics. EBSD can provide a wide range of information on materials including grain size, grain orientation, texture, and phase identity. In the case of metallic alloys, EBSD now has become an essential technique to analyze the texture, particularly when severe deformation is applied to the alloys. In addition, EBSD can be one of the very useful tools in identification of twin, particularly in Mg alloys. In Mg alloys different type of twin can occur depending on the c/a ratio and stacking fault energy on the twinning plane. Such an occurrence of different type of twin can be most effectively analyzed using EBSD technique. In this article, the recent development of Mg alloys and occurrence of twin in Mg are reviewed. Then, recently published example for identification of tension and compression twins in AZ31 and ZX31 is introduced to explain how EBSD can be used for identification of twin in Mg.