• Title/Summary/Keyword: non-tuberculosis mycobacteria

Search Result 37, Processing Time 0.025 seconds

Five Rare Non-Tuberculous Mycobacteria Species Isolated from Clinical Specimens (임상에서 분리된 희귀 비결핵 마이코박테리아 5종)

  • Park, Young-Kil;Lee, Young-Ju;Yu, Hee-Kyung;Jeong, Mi-Young;Ryoo, Sung-Weon;Kim, Chang-Ki;Kim, Hee-Jin
    • Tuberculosis and Respiratory Diseases
    • /
    • v.69 no.5
    • /
    • pp.331-336
    • /
    • 2010
  • Background: Recently, the rate of infections with non-tuberculous mycobacteria (NTM) has been increasing in Korea. Precise identification of NTM is critical to determination of the pathogen and to target treatment of NTM patients. Methods: Sixty-eight unclassified mycobacteria isolates by rpoB PCR-RFLP assay (PRA) collected in 2008 were analyzed by National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) search after sequencing of 16S rRNA, hsp65, rpoB genes. Results: Nineteen strains of 68 isolates were specified as species after sequencing analysis of 3 gene types. We found 3 M. lentifulavum, 5 M. arupense, 4 M. triviale, 4 M. parascrofulaceum, and one M. obuense. One M. tuberculosis and another M. peregrinum were mutated at the Msp I recognition site needed for rpoB PRA. The remaining 49 isolates did not coincide with identical species at the 3 kinds genes. Conclusion: Sequencing analysis of 16S rRNA, hsp65, rpoB was useful for identification of NTM unclassified by rpoB PRA.

Mycobacterial Infection among Retired Dusty Workers Ineligible for Medical Care Benefits for Work-related Pneumoconiosis (요양 비대상인 분진작업 이직근로자에서 마이코박테리아 감염)

  • Joo Hwan Hwang
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.3
    • /
    • pp.355-364
    • /
    • 2023
  • Objectives: The objective of the present study was to identify mycobacterial infection in retired dusty workers who were ineligible for medical care benefits for work-related pneumoconiosis. Methods: Sputum samples were collected from 170 retired dusty workers living in Gangwon-do. The mycobacterial culture was grown in 2% Ogawa medium and Mycobacteria Growth Indicator Tube(MGIT). Mycobacterial species were identified using MolecuTech REBA Myco-ID. Results: Thirty-one(18.2%) out of 170 sputum samples were identified as positive for culture. Among the positive culture samples, eleven(6.5%) were identified as mycobacterial species. The proportion of mycobacteria was M. avium 2.3%(4/170), M. fortuitum complex 1.2%(2/170), M. intracellulare 1.2%(2/170), M. abscessus 0.6%(1/170), M. tuberculosis(MTB) complex 0.6%(1/170), and MYC(NTM except 19 species) 0.6%(1/170). Conclusions: In comparison with previous studies, the incidence rate of tuberculosis(TB) in retired dusty workers who were ineligible for medical care benefits for work-related pneumoconiosis was higher than in close contact with TB patients, workers exposed to silica, and patients with silicosis. And the proportion of non-tuberculosis mycobacteria(NTM) was higher than that of MTB.

Identification of Mycobacteria Using Polymerase Chain Reaction and Sputum Sample (객담을 이용한 Mycobacteria의 검출과 중합효소 연쇄반응의 민감성 비교)

  • Jang, Hyung Seok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.2
    • /
    • pp.83-89
    • /
    • 2015
  • Although Mycobacterium tuberculosis complex strains remain responsible for the majority of diseases caused by mycobacterial infections worldwide, the increase in HIV (human immuno deficiency virus) infections has allowed for the emergence of other non-tuberculous mycobacteria as clinically significant pathogens. M. tuberculosis was detected by two-tube nested polymerase chain reaction (PCR) and non-tuberculous mycobacteria was detected by PCR-restriction fragment length polymorphism (RFLP) with Msp I. Result of niacin test is equal to result of two-tube nested PCR after culture for M. tuberculosis. In this study, acid fast bacilli stain (AFB. stain) >2+ case, Detection of Mycobacteria is similar to result before culture and after culture. AFB. stain <1+ case, result of mycobacteria is distinguished. Conclusionly, these results suggest that identification of mycobacteria must go side by side both culture and PCR for more fast and accuracy.

Inactivation of Mycobacteria by Radicals from Non-Thermal Plasma Jet

  • Lee, Chaebok;Subhadra, Bindu;Choi, Hei-Gwon;Suh, Hyun-Woo;Uhm, Han. S;Kim, Hwa-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1401-1411
    • /
    • 2019
  • Mycobacterial cell walls comprise thick and diverse lipids and glycolipids that act as a permeability barrier to antibiotics or other chemical agents. The use of OH radicals from a non-thermal plasma jet (NTPJ) for the inactivation of mycobacteria in aqueous solution was adopted as a novel approach. Addition of water vapor in a nitrogen plasma jet generated OH radicals, which converted to hydrogen peroxide ($H_2O_2$) that inactivated non-pathogenic Mycobacterium smegmatis and pathogenic Mycobacterium tuberculosis H37Rv. A stable plasma plume was obtained from a nitrogen plasma jet with 1.91 W of power, killing Escherichia coli and mycobacteria effectively, whereas addition of catalase decreased the effects of the former. Mycobacteria were more resistant than E. coli to NTPJ treatment. Plasma treatment enhanced intracellular ROS production and upregulation of genes related to ROS stress responses (thiolrelated oxidoreductases, such as SseA and DoxX, and ferric uptake regulator furA). Morphological changes of M. smegmatis and M. tuberculosis H37Rv were observed after 5 min treatment with $N_2+H_2O$ plasma, but not of pre-incubated sample with catalase. This finding indicates that the bactericidal efficacy of NTPJ is related to the toxicity of OH and $H_2O_2$ radicals in cells. Therefore, our study suggests that NTPJ treatment may effectively control pulmonary infections caused by M. tuberculosis and nontuberculous mycobacteria (NTM) such as M. avium or M. abscessus in water.

Immunopathogenesis of Non-Tuberculous Mycobacteria Lung Disease (비결핵항산균 폐질환의 면역 발병 기전)

  • Jiwon Lyu
    • The Korean Journal of Medicine
    • /
    • v.99 no.4
    • /
    • pp.169-179
    • /
    • 2024
  • In recent years, the incidence and prevalence of non-tuberculous mycobacteria lung disease (NTM-LD) has been increasing worldwide. In Korea, Mycobacterium avium complex (MAC) and Mycobacterium abscessus complex account for most common cause of NTM-LD. It is essential to elucidate the pathophysiology of NTM-LD. The pathophysiology of NTM-LD has not been fully understood, however, it can be divided into bacterial and host-side factor. Among the host factor, innate immunity plays an essential role in the initial host immune response against intracellular non-tuberculous mycobacteria (NTM), and adaptive immunity also has a role. However, the role of these immunity in mycobacterial disease has been mainly studied in tuberculosis, but studies on its role in NTM are limited. In this review, I focus on NTM innate and adaptive immunity, the role of macrophages and neutrophils, and host interaction in NTM infection.

Comparison of Ogawa Media, BACTEC MGIT 960 System and TB/NTM Real-Time PCR for Detecting Mycobacterium Species

  • Bang, Hae-In;Choi, Tae-Youn;Shin, Jeong-Won
    • Tuberculosis and Respiratory Diseases
    • /
    • v.71 no.4
    • /
    • pp.249-253
    • /
    • 2011
  • Background: Mycobacterial infection is a problem throughout the world along with the increase of immunocompromised patients. For this reason, there have been many methods for faster and more accurate diagnosis. In this study, we evaluated several laboratory methods for mycobacterial infection. Methods: From January to December 2009, 635 specimens were cultured with mycobacteria growth indicator tube (MGIT) and Ogawa media. Polymerase chain reaction (PCR) was performed with the AdvanSure tuberculosis (TB)/non-tuberculosis mycobacterium (NTM) real-time PCR Kit (LG Life Sciences, Seoul, Korea). The 69 samples showing positive culture results were identified with the AdvanSure Mycobacteria Genotyping Chip Kit (LG Life Science, Seoul, Korea). Results: Sixty-nine (10.9%) out of 635 samples showed positive results for mycobacterial culture. Among the 635 samples, 64 were positive in MGIT, but only 42 were positive in Ogawa media. Of the 635 samples, 607 (95.6%) showed the same results between MGIT and Ogawa and the results of 579 (95.4%) were also consistent with the TB/NTM real-time PCR results. However, in the case of NTM, only one (1/24, 4.2%) was positive in PCR. In the Mycobacteria genotyping chip analysis, the most frequently identified NTM species in descending order were M. avium, M. intracellulare, M. chelonae and M. abscessus. Conclusion: Culturing with a combination of MGIT and Ogawa is recommended to increase the recovery rate of mycobacteria. Although PCR missed a reasonable number of NTM, it is faster and usually gives results that concur with those from the culture. The appropriate combination of diagnostic methods with clinical correlation are necessary.

A Simple, Single Triplex PCR of IS6110, IS1081, and 23S Ribosomal DNA Targets, Developed for Rapid Detection and Discrimination of Mycobacterium from Clinical Samples

  • Nghiem, Minh Ngoc;Nguyen, Bac Van;Nguyen, Son Thai;Vo, Thuy Thi Bich;Nong, Hai Van
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.745-752
    • /
    • 2015
  • Tuberculosis (TB) is the most common mycobacterial infection in developing countries, requiring a rapid, accurate, and well-differentiated detection/diagnosis. For the rapid detection and discrimination of Mycobacterium tuberculosis complex (MTC) from non-tuberculous mycobacteria (NTM), a novel, simple, and primer-combined single-step multiplex PCR using three primer pairs (6110F-6110R, 1081F-1081R, and 23SF-23SR; annealing on each of IS6110, IS1081, and 23S rDNA targets), hereafter referred to as a triplex PCR, has been developed and evaluated. The expected product for IS6110 is 416 bp, for IS1081 is 300 bp, and for 23S rDNA is 206 bp by single PCR, which was used to verify the specificity of primers and the identity of MTC using DNA extracted from the M. tuberculosis H37Rv reference strain (ATCC, USA) and other mycobacteria other than tuberculosis (MOTT) templates. The triplex PCR assay showed 100% specificity and 96% sensitivity; the limit of detection for mycobacteria was ~100 fg; and it failed to amplify any target from DNA of MOTT (50 samples tested). Of 307 blinded clinical samples, overall 205 positive M. tuberculosis samples were detected by single PCR, 142 by conventional culture, and 90 by AFB smear methods. Remarkably, the triplex PCR could subsequently detect 55 positive M. tuberculosis from 165 culture-negative and 115 from 217 AFB smear-negative samples. The triplex PCR, targeting three regions in the M. tuberculosis genome, has proved to be an efficient tool for increasing positive detection/discrimination of this bacterium from clinical samples.

Comparative Evaluation of Three Culture Methods for the Isolation of Mycobacteria from Clinical Samples

  • Sorlozano, Antonio;Soria, Isabel;Roman, Juan;Huertas, Pilar;Soto, Maria Jose;Piedrola, Gonzalo;Gutierrez, Jose
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1259-1264
    • /
    • 2009
  • We assessed the capacity of two liquid-medium culture methods with automated incubation and reading systems (MB/BacT ALERT 3D System and BACTEC MGIT 960 System) and one solid-medium culture method ($L\ddot{o}wenstein$-Jensen) to detect mycobacteria in different types of clinical samples. Out of 1,770 cultured clinical samples (1,519 of respiratory origin and 251 of non respiratory origin), mycobacteria were isolated in 156 samples (135 M. tuberculosis complex, 8 M. chelonae, 6 M. kansasii, 4 M. fortuitum, 2 M. gordonae, and 1 M. marinum) by at least one of the methods used. The BACTEC MGIT 960 System proved to be the most sensitive method (86.5%), especially in the detection of M. tuberculosis complex (89.1%). However, $L\ddot{o}wenstein$-Jensen culture was the most sensitive (76.2%) to detect nontuberculous mycobacteria. The BACTEC MGIT 960 System showed the lowest mean detection time for mycobacterial growth (15.3 days), significantly shorter than the other two methods. Highest sensitivity (95.5%) and specificity (99.6%) values were obtained using the BACTEC MGIT 960 System with the $L\ddot{o}wenstein$-Jensen culture method, which was also the only combination capable of detecting 100% of the nontuberculous mycobacteria.

Study on the Prevalence of Lung Disease of Non-Tuberculosis Mycobacterium Isolated from Respiratory Specimens in Gwangju Second Hospital over the Last 10 Years (최근 10년간 광주 2차병원의 호흡기검체에서 분리된 비결핵 항산균의 폐질환 유병률에 대한 연구)

  • Baek, Hae-Gyeong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.4
    • /
    • pp.349-355
    • /
    • 2020
  • Recently, the detection of Mycobacterium tuberculosis complex (MTBC) in respiratory specimens has decreased, and nontuberculous mycobacteria (NTM) has increased. This study examined the increase in NTM lung disease patients and their age and sex distribution compared to the increase in NTM detection in 132,359 respiratory specimens examined in a Gwangju Secondary Hospital from 2010 to 2019. Furthermore, the prevalence of pulmonary tuberculosis infection in NTM positive patients was investigated. The positive rates of the mycobacterial culture were 21.9% (1,624/7,403) in 2010 and 17.4% (1,937/11,161) in 2019. The NTM recovery rate increased from 38.0% (617/1,624) in 2010 to 72.4% (1,403/1,937) in 2019. The average diagnosis rate of NTM lung disease in the NTM positive patients was 27.1%. Among them, cases of current pulmonary tuberculosis infection decreased from 44.9% in 2010 to 23.4% in 2019, and cases of previous diagnosis or treatment decreased from 15.8% to 10.7%. Of all NTM lung diseases, 69.0% were in their 60s or older, with more females than males. In the future, according to aging and tuberculosis management policies, NTM detection is expected to increase while MTBC decreases and laboratories must pay close attention to this phenomenon and constantly monitor the test results.

Pulmonary Tuberculosis Diagnosis: Where We Are?

  • Leylabadlo, Hamed Ebrahimzadeh;Kafil, Hossein Samadi;Yousefi, Mehdi;Aghazadeh, Mohammad;Asgharzadeh, Mohammad
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.3
    • /
    • pp.134-142
    • /
    • 2016
  • In recent years, in spite of medical advancement, tuberculosis (TB) remains a worldwide health problem. Although many laboratory methods have been developed to expedite the diagnosis of TB, delays in diagnosis remain a major problem in the clinical practice. Because of the slow growth rate of the causative agent Mycobacterium tuberculosis, isolation, identification, and drug susceptibility testing of this organism and other clinically important mycobacteria can take several weeks or longer. During the past several years, many methods have been developed for direct detection, species identification, and drug susceptibility testing of TB. A good understanding of the effectiveness and practical limitations of these methods is important to improve diagnosis. This review summarizes the currently-used advances in non-molecular and molecular diagnostics.