• Title/Summary/Keyword: non-toxic

Search Result 799, Processing Time 0.022 seconds

The Biological Activity of a New Glycoside, Chiisanoside from Acanthopanax chiisanensis Nakai Leaves (지리오갈피나무 엽 신 배당체 Chiisanoside의 생물학적 효능)

  • 김창종;한덕룡
    • YAKHAK HOEJI
    • /
    • v.24 no.2
    • /
    • pp.123-134
    • /
    • 1980
  • A new glycoside was isolated from Acanthopanax chiisanensis Nakai (Araliaceae) leaves and its biological activity was investigated. The new glycoside was tentatively assigned the structure of Asecotriterpenoid glycoside, $C_{48}H_{76}O_{19}$ m.p. $208~209^{\circ}$ and named chiisanoside. Chiisanoside exhibited non-toxic effects and significant antihistaminic activity. It was found that chiisanoside showed the antidiabetic activity against epinehrine-and alloxan-induced diabetes, decreased the toxicity of $LD_{50}$ by ephedrine hydrochloride and promoted the elimination of chloramphenicol from blood. Chiisanoside also increased the survival rate in rats intoxicated by carbon tetrachloride from death and led to re-establishment of normal enzymatic function. In the histopathological studies, chiisanoside improved fatty degeneration and parenchymal cell necrosis of the liver induced by carbon tetrachloride in rats.

  • PDF

Comparative in vitro biotransformation of fipronil in domestic poultry using liver microsome

  • Kraisiri, Khidkhan;Saranya, Poapolathep;Sittinee, Kulprasertsri;Rattapong, Sukkheewan;Paphatsara, Khunlert;Mario, Giorgi;Amnart, Poapolathep
    • Journal of Veterinary Science
    • /
    • v.23 no.6
    • /
    • pp.82.1-82.6
    • /
    • 2022
  • Domestic poultry are among the non-target species of exposure to fipronil, but limited information is available on the metabolic effects of fipronil exposure in avian. We investigated the comparative capacity of in vitro biotransformation of fipronil among chicken, duck, quail, goose, and rat. Interspecies differences in kinetic parameters were observed; the clearance rate calculations (Vmax/Km) indicated that chicken and duck are more efficient in the cytochrome P450-mediated metabolism of fipronil to sulfone than quail, goose and rat. The lower hepatic clearance of fipronil in quail, goose and rat, suggested that fipronil sulfone may serve as a biomarker to indicate fipronil exposure in these species.

Economic management of human businesses: Extending the life span of vegetables

  • Honglei Zhu;Duo Li
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.461-468
    • /
    • 2023
  • Edible coatings are one of the most innovative methods to preserve the quality and increase the shelf life of fresh fruits and vegetables. A successful edible coating should have a barrier against gases, especially oxygen and water vapor, and have good surface characteristics. Today, chitosan coating is widely used due to its properties, such as non-toxic, biodegradable, and biocompatibility. Is. Coating the surface of fruits and vegetables with chitosan increases shelf life due to reducing weight loss and reducing respiration rate and also reduces decay due to its antimicrobial and anti-fungal effect. This work discusses the effect of using chitosan coating containing chamomile extract to increase fresh vegetables'shelf life. In addition to increasing the shelf life of vegetables, this method can be used as a solution for the economic management of human resources. The results of this method confirm the successful synthesis of these nanoparticles, and the results of applying this food coating on vegetables have been successful. They have increased the shelf life of vegetables such as basil and spinach.

Doxorubicin-loaded PEI-silica Nanoparticles for Cancer Therapy

  • Heekyung Park;Seungho Baek;Donghyun Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.570-575
    • /
    • 2023
  • Targeted anticancer drug delivery systems are needed to enhance therapeutic efficacy by selectively delivering drugs to tumor cells while minimizing off-target effects, improving treatment outcomes and reducing toxicity. In this study, a silica-based nanocarrier capable of targeting drug delivery to cancer cells was developed. First, silica nanoparticles were synthesized by the Stöber method using the surfactant cetyltrimethylammonium bromide (CTAB). Increasing the ratio of EtOH in the solvent produced uniformly spherical silica nanoparticles. Washing the nanoparticles removed unreacted residues, resulting in a non-toxic carrier for drug delivery in cells. Upon surface modification, the pH-responsive polymer, polyethyleneimine (PEI) exhibited slow doxorubicin release at pH 7.4 and accelerated release at pH 5.5. By exploiting this feature, we developed a system capable of targeted drug release in the acidic tumor microenvironment.

Sustainable production of natural products using synthetic biology: Ginsenosides

  • So-Hee Son;Jin Kang;YuJin Shin;ChaeYoung Lee;Bong Hyun Sung;Ju Young Lee;Wonsik Lee
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.140-148
    • /
    • 2024
  • Synthetic biology approaches offer potential for large-scale and sustainable production of natural products with bioactive potency, including ginsenosides, providing a means to produce novel compounds with enhanced therapeutic properties. Ginseng, known for its non-toxic and potent qualities in traditional medicine, has been used for various medical needs. Ginseng has shown promise for its antioxidant and neuroprotective properties, and it has been used as a potential agent to boost immunity against various infections when used together with other drugs and vaccines. Given the increasing demand for ginsenosides and the challenges associated with traditional extraction methods, synthetic biology holds promise in the development of therapeutics. In this review, we discuss recent developments in microorganism producer engineering and ginsenoside production in microorganisms using synthetic biology approaches.

A Study on the Comparison of Odor Reduction by Livestock Farming Using Abelmoschus Manihot Jinhuakui Feed Additives

  • Gok Mi Kim;Jun Su Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.1
    • /
    • pp.287-292
    • /
    • 2024
  • The problem of odor and environmental pollution caused by livestock manure is spreading greatly as a social issue. To reduce the odor of livestock raised in livestock farms and improve the farm environment, raw materials of Abelmoschus manihot Jinhuakui were put into feed additives to measure the state of odor. It is characterized by being non-toxic and sweet, and Abelmoschus manihot Jinhuakui, which contains abundant nutrients that are beneficial to health in all parts such as roots, stems, and flowers, is a medicinal plant that cannot be discarded. In particular, it has the effect of helping bowel movements because it stimulates bowel movements. Ammonia levels were investigated through the KS X 3279 national standard-applied smart livestock IoT hub sensor pack installed at Flower Garden and Ugil Farm. The purpose of this paper is to reduce the odor that is the most problematic on farms and improve the environment, and it is planned to expand research into deodorants after feed additives. It is hoped that the research results will solve the livestock problem and help livestock farmers.

Efficient recycling strategies for slurry TBM excavated soil

  • Sung-Min Nam;Joon-Shik Moon;Junyoung Ko;Hyoungseok Oh
    • Geomechanics and Engineering
    • /
    • v.38 no.6
    • /
    • pp.603-609
    • /
    • 2024
  • In downtown subway project most of excavated soil is discarded externally, whereas in road construction excavated soil is used as filling material and management of surplus soil becomes important factor for success of the project. Excavated materials from slurry shield TBM are discharged through discharge pipe to slurry treatment plant and excavated soil mixed with bentonite are separated in separation plant by grain size. Fine material has been discarded together in filter cake without recycling. Its volume can vary according to geologic condition but statistically fine material as filter cake is about 5%~30% out of overall excavated volume. However, filter cake is non-toxic and can be recycled when mixed in the appropriate proportions with coarse aggregate. Therefore, in this study, utilization of excavated soil from a slurry shield TBM were examined and lab tests were conducted to find the proper way for mixing filter cake and aggregate to be recycled as fill material for road construction.

Toxicity of the Pufferfish Fugu stictonotus ('Ggachilbog') Collected at a Fish Market of Pusan (시판되고 있는 까칠복(Fugu stictonotus)의 독성)

  • KIM Kyung-Chan;PARK Jin-Woo;LEE Myung-Ja;KIM Sang-Rok;KIM Dong-Soo;KIM Hyun-Dae;PARK Yeung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.1
    • /
    • pp.31-34
    • /
    • 1995
  • Ten specimens (5 males and 5 females) of the pufferfish, fugu stictonotus ('gachilbog'), were collected at a fish market of Pusan, Korea in July 1993, and examined for anatomical distribution of toxicity by mouse assay method. The frequency of toxic specimens was $40\%\;for\;liver,\;60\%$ for ovary, $40\%\;for\;skin\;and\;60\%$ for bile in female puffers. The highest toxicities were 107, 107, 29 and 93MU/g for liver, ovary, skin and bile, respectively; and average toxicity $\pm S.E.\;values\;were\;14\pm11,\;48\pm22.4\pm3\;and\;12\pm9MU/g,$ respectively. The range of total toxicity was shown to be from 0 to 35,316MU. The characteristic pattern of toxin distribution observed on these specimens was exhibited; both muscle and testis were non-toxic, but others were weakly toxic. Also, there was significant difference for toxicity between male and female specimens.

  • PDF

Photocatalytic Degradation and Detoxification of Bisphenol A Using TiO2 Nanoparticles (TiO2 나노입자 광촉매 반응에 의한 비스페놀 A의 분해 제거 및 독성 저감)

  • Jo, A-Yeong;Jung, Jinho
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.4
    • /
    • pp.330-336
    • /
    • 2015
  • Photocatalytic degradation of bisphenol A (BPA) in aqueous solution was investigated using $TiO_2$ nanoparticles (Degussa P25) in this study. After a 3 hr photocatalytic reaction (${\lambda}=365nm$ and $I=3mW\;cm^{-2}$, $[TiO_2]=2.0g\;L^{-1}$), 98% of BPA ($1.0{\times}10^{-5}M$) was degraded and 89% of the total organic carbon was removed. In addition, BPA degradation by photolytic, hydrolytic and adsorption reactions was found to be 2%, 5% and 13%, respectively. The reaction rate of BPA degradation by photocatalysis decreased with increasing concentration of methanol that is used as a hydroxyl radical scavenger. This indicates that the reaction between BPA and hydroxyl radical was the key mechanism of BPA degradation. The pseudo-first-order reaction rate constant for this reaction was determined to be $7.94{\times}10^{-4}min^{-1}$, and the time for 90% BPA removal was found to be 25 min. In addition, acute toxicity testing using Daphnia magna neonates (< 24 h old) was carried out to evaluate the reduction of BPA toxicity. Acute toxicity (48 hr) to D. magna was decreased from 2.93 TU (toxic unit) to non-toxic after photocatalytic degradation of BPA for 3 hr. This suggests that there was no formation of toxic degradation products from BPA photocatalysis.

Ecological Effects of Slag Extracts on the Initial Life Cycle of the Rotifer Brachionus plicatilis and Benthic Copepod Tigriopus japonicus (윤충류 Brachinus plicatilis와 저서성 요각류 Tigriopus japonicus의 초기생활사에 미치는 슬래그 추출액의 생태 영향)

  • Yoon, Sung-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.490-499
    • /
    • 2016
  • In this study, the marine ecological impacts of dephosphorized slag and steel slag on the initial life cycle of the rotifer Brachionus plicatilis and benthic copepod Tigriopus japonicus (in marine trophic structure as a first consumer) exposure to slag extracts have been considered using a marine ecotoxicological assessment. In the results of a screen test on slag extracts, the pH of an undiluted solution was measured to have high alkalinity (pH 8.89-12.16), but a toxic reaction to this undiluted solution before and after aging was divided according to test species. For non-aged slag, the toxic effect ($LC_{50}$) of neonate on B. plicatilis was seen to be severe with dephosphorized slag (20.8 %) than steel slag (63.8 %) with under pH-uncontrolled conditions. The toxic values of dephosphorized and steel slag were estimated to be 35.3 % and 36.0%, respectively, for nauplius with T. japonicus. However, the toxicity of slag extracts before and after aging were different for T. japonicus than for B. plicatilis based on the characteristics of the test materials, with pH-controlled conditions. In conclusion, the results of this study suggest that slag can be relatively stable after aging and may not be likely to influence marine environments, even given repetitive extracting under pH-uncontrolled conditions. This study confirms that a marine ecotoxicological assessment method applied to mechanically activated samples can give an idea of the resistance a marine environment has against the introduction of hazardous materials due to precipitation and weathering.