• Title/Summary/Keyword: non-symplectic automorphisms

Search Result 3, Processing Time 0.018 seconds

SOME REMARKS ON NON-SYMPLECTIC AUTOMORPHISMS OF K3 SURFACES OVER A FIELD OF ODD CHARACTERISTIC

  • Jang, Junmyeong
    • East Asian mathematical journal
    • /
    • v.30 no.3
    • /
    • pp.321-326
    • /
    • 2014
  • In this paper, we present a simple proof of Corollary 3.3 in [5] using the fact that for a K3 surface of finite height over a field of odd characteristic, the height is a multiple of the non-symplectic order. Also we prove for a non-symplectic CM K3 surface defined over a number field the Frobenius invariant of the reduction over a finite field is determined by the congruence class of residue characteristic modulo the non-symplectic order of the K3 surface.

CLASSIFICATION OF ORDER SIXTEEN NON-SYMPLECTIC AUTOMORPHISMS ON K3 SURFACES

  • Tabbaa, Dima Al;Sarti, Alessandra;Taki, Shingo
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1237-1260
    • /
    • 2016
  • In the paper we classify complex K3 surfaces with non-symplectic automorphism of order 16 in full generality. We show that the fixed locus contains only rational curves and points and we completely classify the seven possible configurations. If the Picard group has rank 6, there are two possibilities and if its rank is 14, there are five possibilities. In particular if the action of the automorphism is trivial on the Picard group, then we show that its rank is six.

ON THE TOPOLOGY OF DIFFEOMORPHISMS OF SYMPLECTIC 4-MANIFOLDS

  • Kim, Jin-Hong
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.675-689
    • /
    • 2010
  • For a closed symplectic 4-manifold X, let $Diff_0$(X) be the group of diffeomorphisms of X smoothly isotopic to the identity, and let Symp(X) be the subgroup of $Diff_0$(X) consisting of symplectic automorphisms. In this paper we show that for any finitely given collection of positive integers {$n_1$, $n_2$, $\ldots$, $n_k$} and any non-negative integer m, there exists a closed symplectic (or K$\ddot{a}$hler) 4-manifold X with $b_2^+$ (X) > m such that the homologies $H_i$ of the quotient space $Diff_0$(X)/Symp(X) over the rational coefficients are non-trivial for all odd degrees i = $2n_1$ - 1, $\ldots$, $2n_k$ - 1. The basic idea of this paper is to use the local invariants for symplectic 4-manifolds with contact boundary, which are extended from the invariants of Kronheimer for closed symplectic 4-manifolds, as well as the symplectic compactifications of Stein surfaces of Lisca and Mati$\acute{c}$.