• Title/Summary/Keyword: non-structural components

Search Result 211, Processing Time 0.022 seconds

Effect of Water Adulteration on the Rheology and Antibacterial Activities of Honey

  • ANIDIOBU, Vincent Okechukwu
    • The Korean Journal of Food & Health Convergence
    • /
    • v.8 no.5
    • /
    • pp.11-20
    • /
    • 2022
  • Honey was diluted with different percentages of water and was analysed rheologically at room temperature of 27℃. The rheological profiles of pure and impure honey samples were measured at low shear rates (0.01-4.16s-1). This work developed a structural kinetic model, which correlated well with the rheological data. The new model was used to categorise honey samples using their average molecular weights as one of the distinctive properties. Also, the kinetics order in the new model predicts the number of active components in the "honey" undergoing deformation. Honey produced third order kinetics to depict the monomers, oligomers and water content in honey. Pure honey exhibits peculiar non-Newtonian rheological behaviour. The behaviour of water is Newtonian. Dilution of honey with different percentages of water turns the resulting fluid Newtonian from 10% dilution with water. This study analysed the antibacterial activities of honey and serially adulterated samples against Staphylococcus aureus and Pseudomonas aeruginosa. The antibacterial analyses of honey were conducted using Kirby Bauer's well diffusion method. The results indicated that pure honey exhibited a zone of inhibition against both organisms. Also, the diameter of the zone of inhibition decreased with increasing dilution of honey, suggesting a correlation with the rheological method.

Literature Review of Machine Condition Monitoring with Oil Sensors -Types of Sensors and Their Functions (윤활유 분석 센서를 통한 기계상태진단의 문헌적 고찰 (윤활유 센서의 종류와 기능))

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.297-306
    • /
    • 2020
  • This paper reviews studies on the types and functions of oil sensors used for machine condition monitoring. Machine condition monitoring is essential for maintaining the reliability of machines and can help avoid catastrophic failures while ensuring the safety and longevity of operation. Machine condition monitoring involves several components, such as compliance monitoring, structural monitoring, thermography, non-destructive testing, and noise and vibration monitoring. Real-time monitoring with oil analysis is also utilized in various industries, such as manufacturing, aerospace, and power plants. The three main methods of oil analysis are off-line, in-line, and on-line techniques. The on-line method is the most popular among these three because it reduces human error during oil sampling, prevents incipient machine failure, reduces the total maintenance cost, and does not need complicated setup or skilled analysts. This method has two advantages over the other two monitoring methods. First, fault conditions can be noticed at the early stages via detection of wear particles using wear particle sensors; therefore, it provides early warning in the failure process. Second, it is convenient and effective for diagnosing data regardless of the measurement time. Real-time condition monitoring with oil analysis uses various oil sensors to diagnose the machine and oil statuses; further, integrated oil sensors can be used to measure several properties simultaneously.

The Effect of Social Capital on Creating Shared Value for Educational Companies

  • HONG, Seung-Hyun;KIM, Seong-Gon
    • The Journal of Industrial Distribution & Business
    • /
    • v.13 no.2
    • /
    • pp.33-43
    • /
    • 2022
  • Purpose: To examine the strength of social capital (SC) that are likely to affect Created share value (CSV) factors. This research aims to conduct a literature review to establish the components of SC and CSV identified within educational research and use factor analysis to identify how numerical values differ from the average and the amount of variance expressed in eigenvalue and factor score. Research design, data and methodology: To achieve the purpose of the study and provide adequate empirical results, we conducted the structural equation analysis using IBM AMOS 24.0 and collect online questionnaires from top practitioners, managers and non-managerial employees in Korean education firms, which will be used to conduct a factor analysis to assess SC's effect on CSV. Results: Final analysis of the path coefficient of the research model indicated that the SC values based on six have a significantly positive (+) effect on CSV values based on three categories (β=.35, p<.001). Therefore, the current research accepts the hypothesis in determining that SC can enhance the impact of CSV in educational companies. Conclusions: From the study, the practitioners of education companies should make more efforts to find action plans to create corporate social responsibility and shared value, which are required throughout society.

In-silico characterization and structure-based functional annotation of a hypothetical protein from Campylobacter jejuni involved in propionate catabolism

  • Mazumder, Lincon;Hasan, Mehedi;Rus’d, Ahmed Abu;Islam, Mohammad Ariful
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.43.1-43.12
    • /
    • 2021
  • Campylobacter jejuni is one of the most prevalent organisms associated with foodborne illness across the globe causing campylobacteriosis and gastritis. Many proteins of C. jejuni are still unidentified. The purpose of this study was to determine the structure and function of a non-annotated hypothetical protein (HP) from C. jejuni. A number of properties like physiochemical characteristics, 3D structure, and functional annotation of the HP (accession No. CAG2129885.1) were predicted using various bioinformatics tools followed by further validation and quality assessment. Moreover, the protein-protein interactions and active site were obtained from the STRING and CASTp server, respectively. The hypothesized protein possesses various characteristics including an acidic pH, thermal stability, water solubility, and cytoplasmic distribution. While alpha-helix and random coil structures are the most prominent structural components of this protein, most of it is formed of helices and coils. Along with expected quality, the 3D model has been found to be novel. This study has identified the potential role of the HP in 2-methylcitric acid cycle and propionate catabolism. Furthermore, protein-protein interactions revealed several significant functional partners. The in-silico characterization of this protein will assist to understand its molecular mechanism of action better. The methodology of this study would also serve as the basis for additional research into proteomic and genomic data for functional potential identification.

Cyclic behavior of jumbo reduced beam section connections with heavy sections: Numerical investigation

  • Qi, Liangjie;Liu, Mengda;Shen, Zhangpeng;Liu, Hang
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.183-196
    • /
    • 2022
  • Reduced beam section (RBS) moment connections used in special moment resisting frames are currently limited to beam sections that are not larger than nominal depths of 920 mm, weight of 447 kg/m and flange thickness of 44 mm. Due to the higher demand for structural components with jumbo sections, which can potentially be applied in the transfer girders in long-span building structures, the newly available steel heavy members are promising. To address this issue, advanced numerical models are developed to fully evaluate the distribution of stresses and concentrations of plastic strains for such jumbo RBS connections. This paper first presents a brief overview of an experimental study on four specimens with large beam and column sections. Then, a numerical model that includes initial imperfections, residual stresses, geometric nonlinearity, and explicitly modeled welds is presented. The model is used to further explore the behavior of the test specimens, including distribution of stresses, distribution of plastic strains, stress triaxiality and potential for fracture. The results reveal that the stresses are highly non-uniform across the beam flange and, similarly, the plastic strains concentrate at the extreme fiber of the bottom flange. However, neither of these phenomena, which are primarily a function of beam flange thickness, is reflected in current design procedures.

Seismic Design Force for Rectangular Water Tank with Flexible Walls (유연한 벽면을 가진 사각형 물탱크의 설계지진력 산정)

  • Kim, Min Woo;Yu, Eunjong;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.303-310
    • /
    • 2023
  • The equivalent static load for non-structural elements has a limitation in that the sloshing effect and the interaction between the fluid and the water tank cannot be considered. In this study, the equations to evaluate the impulse and convective components in the design codes and previous research were compared with the shaking table test results of a rectangular water tank with flexible wall panels. The conclusions of this study can be summarized as follows: (1) It was observed that the natural periods of the impulsive component according to ACI 350.3 were longer than system identification results. Thus, ACI 350.3 may underestimate the earthquake load in the case of water tanks with flexible walls. (2) In the case of water tanks with flexible walls, the side walls deform due to bending of the front and back walls. When such three-dimensional fluid-structure interaction was included, the natural period of the impulsive component became similar to the experimental results. (3) When a detailed finite element (FE) model of the water tank was unavailable, the assumption Sai = SDS could be used, resulting in a reasonably conservative design earthquake load.

Development of Non-Contact Fiber Jumper Cord and Evaluation of Light Transmission Performance (비접촉식 광 점퍼 코드 개발 및 광 전송 성능 평가)

  • Kim, Heonyoung;Kang, Donghoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.399-405
    • /
    • 2016
  • Recently, fiber optic sensors, which have many advantages are being applied in various fields by replacing conventional electric sensors. To transmit the light signals between an interrogator and a sensor head, optical components such as an optical adaptor and optical jumper cords are generally used. When signals are transmitted using an adaptor, the end surface of each jumper cord is faced together. If alien substances exist on the core surface of an optical fiber, those can cause light transmission loss and signal disappearance. For this reason, non-contact fiber jumper cords are developed to overcome the problems that require continual attention. The light transmission performance of non-contact fiber jumper cords are also evaluated. From the test results, conventional fiber jumper cords are unable to transmit the signals over 2 mm cavity between the ends of both cords. Otherwise, non-contact fiber jumper cords can transmit the signals with stability up to the cavity of 7 mm though they have more transmission loss than the conventional ones. Consequently, non-contact fiber jumper cords that have better signal stability than conventional ones in environments are highly recommended in field applications, especially if they play a role as a cable for signal transmission between fiber optic sensors.

Experimental and numerical studies of precast connection under progressive collapse scenario

  • Joshi, Digesh D.;Patel, Paresh V.;Rangwala, Husain M.;Patoliya, Bhautik G.
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.235-248
    • /
    • 2020
  • Progressive collapse in a structure occurs when load bearing members are failed and the adjoining structural elements cannot resist the redistributed forces and fails subsequently, that leads to complete collapse of structure. Recently, construction using precast concrete technology is adopted increasingly because it offers many advantages like faster construction, less requirement of skilled labours at site, reduced formwork and scaffolding, massive production with reduced amount of construction waste, better quality and better surface finishing as compared to conventional reinforced concrete construction. Connections are the critical elements for any precast structure, because in past, major collapse of precast structure took place because of connection failure. In this study, behavior of four different precast wet connections with U shaped reinforcement bars provided at different locations is evaluated. Reduced 1/3rd scale precast beam column assemblies having two span beam and three columns with removed middle column are constructed and examined by performing experiments. The response of precast connections is compared with monolithic connection, under column removal scenario. The connection region of test specimens are filled by cast-in-place micro concrete with and without polypropylene fibers. Performance of specimen is evaluated on the basis of ultimate load carrying capacity, maximum deflection at the location of removed middle column, crack formation and failure propagation. Further, Finite element (FE) analysis is carried out for validation of experimental studies and understanding the performance of structural components. Monolithic and precast beam column assemblies are modeled using non-linear Finite Element (FE) analysis based software ABAQUS. Actual experimental conditions are simulated using appropriate boundary and loading conditions. Finite Element simulation results in terms of load versus deflection are compared with that of experimental study. The nonlinear FE analysis results shows good agreement with experimental results.

Experimental modal analysis of railway concrete sleepers with cracks

  • Real, J.I.;Sanchez, M.E.;Real, T.;Sanchez, F.J.;Zamorano, C.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.51-60
    • /
    • 2012
  • Concrete sleepers are essential components of the conventional railway. As support elements, sleepers are always subjective to a variety of time-dependent loads attributable to the train operations, either wheel or rail abnormalities. It has been observed that the sleepers may deteriorate due to these loads, inducing the formation of hairline cracks. There are two areas along the sleepers that are more prone to crack: the central and the rail seat sections. Several non-destructive methods have been developed to identify failures in structures. Health monitoring techniques are based on vibration responses measurements, which help engineers to identify the vibration-based damage or remotely monitor the sleeper health. In the present paper, the dynamic effects of the cracks in the vibration signatures of the railway pre-stressed concrete sleepers are investigated. The experimental modal analysis has been used to evaluate the modal bending changes in the vibration characteristics of the sleepers, differentiating between the central and the rail seat locations of the cracks. Modal parameters changes of the 'healthy' and cracked sleepers have been highlighted in terms of natural frequencies and modal damping. The paper concludes with a discussion of the most suitable failure indicator and it defines the vibration signatures of intact, central cracked and rail seat cracked sleepers.

Racking shear resistance of steel frames with corner connected precast concrete infill panels

  • Hoenderkamp, J.C.D.;Snijder, H.H.;Hofmeyer, H.
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1403-1419
    • /
    • 2015
  • When precast concrete infill panels are connected to steel frames at discrete locations, interaction at the structural interface is neither complete nor absent. The contribution of precast concrete infill panels to the lateral stiffness and strength of steel frames can be significant depending on the quality, quantity and location of the discrete interface connections. This paper presents preliminary experimental and finite element results of an investigation into the composite behaviour of a square steel frame with a precast concrete infill panel subject to lateral loading. The panel is connected at the corners to the ends of the top and bottom beams. The Frame-to-Panel-Connection, FPC4 between steel beam and concrete panel consists of two parts. A T-section with five achor bars welded to the top of the flange is cast in at the panel corner at a forty five degree angle. The triangularly shaped web of the T-section is reinforced against local buckling with a stiffener plate. The second part consists of a triangular gusset plate which is welded to the beam flange. Two bolts acting in shear connect the gusset plate to the web of the T-section. This way the connection can act in tension or compression. Experimental pull-out tests on individual connections allowed their load deflection characteristics to be established. A full scale experiment was performed on a one-storey one-bay 3 by 3 m infilled frame structure which was horizontally loaded at the top. With the characteristics of the frame-to-panel connections obtained from the experiments on individual connections, finite element analyses were performed on the infilled frame structures taking geometric and material non-linear behaviour of the structural components into account. The finite element model yields reasonably accurate results. This allows the model to be used for further parametric studies.