• Title/Summary/Keyword: non-slender

Search Result 97, Processing Time 0.028 seconds

Structural Design of Ultra High-Strength Concrete Non-Uniform Truss Using Strut-Tie Approach (스트럿-타이 기법에 의한 초고강도 콘크리트 비정형 트러스 구조 디자인)

  • Kim, Hoyeon;Cho, Chang-Geun;Yang, Hea-Joo;Kim, Min-Ji;Chea, Youn-Ha;Choi, Jong-Sung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.69-78
    • /
    • 2018
  • In current research, it was attempted a preliminary design and evaluation of non-uniform ultra high-strength concrete (UHSC) truss members. UHSC used here has the compressive strength of 180 MPa, the tensile strength of 8 to 20 MPa, and the tensile strain after cracks up to 2%. By the three-dimensional finite element stress analysis as well as strut-tie approach on concrete solid beams, the non-uniform truss shape of UHSC truss was designed with the architectural esthetic concept. In a series of examples, to compare with conventional concrete members, the proposed UHSC truss members have advantages in capabilities of the slender design with minimum weight with high performances under transverse loadings as well as the aesthetically non-uniform design for spatial structures.

Development of a user-friendly and transparent non-linear analysis program for RC walls

  • Menegon, Scott J.;Wilson, John L.;Lam, Nelson T.K.;Gad, Emad F.
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.327-341
    • /
    • 2020
  • Advanced forms of structural design (e.g., displacement-based methods) require knowledge of the non-linear force-displacement behavior of both the overall building and individual lateral load resisting elements, i.e., walls or building cores. Similarly, understanding the non-linear behaviour of the elements in a structure can also allow for a less conservative structural response to be calculated by better understanding the cracked (i.e., effective) properties of the various RC elements. Calculating the non-linear response of an RC section typically involves using 'black box' analysis packages, wherein the user may not be in complete control nor be aware of all the intricate settings and/or decisions behind the scenes. This paper introduces a user-friendly and transparent analysis program for predicting the back-bone force displacement behavior of slender (i.e., flexure controlled) RC walls, building cores or columns. The program has been validated and benchmarked theoretically against both commonly available and widely used analysis packages and experimentally against a database of 16 large-scale RC wall test specimens. The program, which is called WHAM, is written using Microsoft Excel spreadsheets to promote transparency and allow users to further develop or modify to suit individual requirements. The program is available free-of-charge and is intended to be used as an educational tool for structural designers, researchers or students.

A Study on Shear Strength of RC Slender Beams Using Non-Bernoulli Compatibility Truss Model (NBCTM) (비-베르누이 적합 트러스 모델을 이용한 RC보의 전단강도 예측)

  • 정제평;김대중;모귀석;김우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.229-233
    • /
    • 2003
  • This paper describes a practical formulation of Non-Bernoulli-Compatibility Truss Model. Not only equilibrium conditions but also some approximations are employed to solve for the unknowns included in the proposed model. By assuming that the ratio of $V_a$ to V remains to be constant along the shear span, the relationship between $\alpha$ and z is mathematically established as an arch shape function. $V_m$ is also approximated to be an empirical value that is equal to the least membrane shear strength. The coefficient a is made utilizing a nonlinear finite element analysis. The adequacy of the model is examined by test results available in literatures, and the predicted values are shown to be in excellent agreement with the experimental results.

  • PDF

Optimal Design of Continuous Girders Considering Compact and Non-compact Cross-sections (연속보 주부재의 조밀 및 비조밀 단면 최적화 설계)

  • 국중식;신영석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.143-150
    • /
    • 1999
  • The LRFD Specification defines two sets of limiting width-to-thickness ratios. On the basis of these limiting values, steel sections we subdivided into three categories: compact, noncompact, and slender sections. A compact section is capable of developing a fully plastic stress distribution (plastic moment), and can sustain rotations approximately three times beyond the yield before the possibility of local buckling arises. Noncompact sections can develop the yield stress before local buckling occurs. They may not, however, resist local buckling at the strain levels required to develop the fully plastic stress distribution. In this paper, 1-Type girders of a 2 span continuous steel bridge are divided into compact and non-compact sections and analyzed. In the design process, an optimization skill was adopted and ADS, a Fortran program for Automated Design Synthesis, was used.

  • PDF

A Microscopic Study on the Egg Envelope of an Endemic Korean Fish, Coreoleuciscus splendidus, Cyprinidae, Teleostei

  • Kim, Chi-Hong;Park, Jong-Sung;Kim, Jae-Goo;Park, Jong-Young
    • Applied Microscopy
    • /
    • v.44 no.3
    • /
    • pp.96-99
    • /
    • 2014
  • Study on the egg envelope of an endemic Korean freshwater fish, Coreoleuciscus splendidus was carried out by light and scanning electron microscopes during its spawning season. The egg envelope on the entire egg is filled with plenty of long cylinder-like villi before and after fertilization. The fertilized eggs consist of two regions, the attaching and non-attaching parts to stick to the substrates. The villi covering the fertilized eggs have three kinds of villi in its length: 1) normal- sized villi of an average of $10.6{\mu}m$ on the non-attachment part; 2) longer and more slender villi over about $20{\mu}m$ on the attachment part, at least being two times longer than those of the non-attachment; and 3) shorter villi under about $5.0{\mu}m$ around the micropyle, with half the size of the non-attachment villi. The micropyle rotated in a counter-clockwise direction with five pieces of the ridges.

Wave load resistance of high strength concrete slender column subjected to eccentric compression

  • Jayakumar, M.;Rangan, B.V.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.3
    • /
    • pp.287-304
    • /
    • 2014
  • A computer based iterative numerical procedure has been developed to analyse reinforced high strength concrete columns subjected to horizontal wave loads and eccentric vertical load by taking the material, geometrical and wave load non-linearity into account. The behaviour of the column has been assumed, to be represented by Moment-Thrust-Curvature relationship of the column cross-section. The formulated computer program predicts horizontal load versus deflection behaviour of a column up to failure. The developed numerical model has been applied to analyse several column specimens of various slenderness, structural properties and axial load ratios, tested by other researchers. The predicted values are having a better agreement with experimental results. A simplified user friendly hydrodynamic load model has been developed based on Morison equation supplemented with a wave slap term to predict the high frequency non-linear impulsive hydrodynamic loads arising from steep waves, known as ringing loads. A computer program has been formulated based on the model to obtain the wave loads and non-dimensional wave load coefficients for all discretised nodes, along the length of column from instantaneous free water surface to bottom of the column at mud level. The columns of same size and material properties but having different slenderness ratio are analysed by the developed numerical procedure for the simulated wave loads under various vertical thrust. This paper discusses the results obtained in detail and effect of slenderness in resisting wave loads under various vertical thrust.

Full scale test and alnalytical evaluation on flexural behavior of tapered H-section beams with slender web

  • Lee, Seong Hui;Choi, Sung Mo;Lee, E.T.;Shim, Hyun Ju
    • Steel and Composite Structures
    • /
    • v.8 no.5
    • /
    • pp.389-402
    • /
    • 2008
  • In December 2005, one(A) of the two pre-engineered warehouse buildings in the port of K City of Korea was completely destroyed and the other(B) was seriously damaged to be demolished. Over-loaded snow and unexpected blast of wind were the causes of the accident and destructive behavior was brittle fracture caused by web local buckling and lateral torsional buckling at the flange below rafter. However, the architectural design technology of today based on material non-linear method does not consider the tolerances to solve the problem of such brittle fracture. So, geometric non-linear evaluation which includes initial deformation, width-thickness ratio, web stiffener and unbraced length is required. This study evaluates the structural safety of 4 models in terms of width-thickness ratio and unbraced length using ANSYS 9.0 with parameters such as width-thickness ratio of web, existence/non-existence of stiffener and unbraced length. The purpose of this study is to analyze destructive mechanism of the above-mentioned two warehouse buildings and to provide ways to promote the safety of pre-engineered buildings.

Comparative Studies on the Ultrastructures of Non-Ciliated and Ciliated Epithelial Cells in the Ductus Epididymidis of Apodemus agrarius coreae (등줄쥐 (Apodemus agrarius coreae)의 부고환관의 무섬모상피세포와 섬모상피세포의 미세구조에 대한 비교 연구)

  • Lee, Jung-Hun
    • Applied Microscopy
    • /
    • v.28 no.3
    • /
    • pp.345-362
    • /
    • 1998
  • In order to the comparative morphological study of the non-ciliated and ciliated epithelial cells, and to elucidate the process of degeneration of non-ciliated epithelial cell of the ductus epididymidis, Korean striped field mouse, Apodemus agrarius coreae was examined with light and transmission electron microscopes. The morphological characteristics of non-ciliated epithelial cell, the cell types of the caput epididymidis (Cp), corpus epididymidis (Cr) and cauda epididymidis (Cu) were long-columnar, short-columnar and short-cuboudal, respectively. The mitochondria and rough endoplasmic reticulum tended to be broken as they immigrated from Cp to the Cu. The Golgi acted vigorously at the Cp, but the Golgi was inactive in Cr and Cu. The secretory vesicles and lysosomes were increased gradually from Cp to the Cu. The process of degeneration of the non-ciliated epithelial cells observed in the Cp, Cr and Cu epididymidis. The increase of the non-ciliated epithelial cells, and its degeneration were observed more often from Cp to the Cu. The morphological characteristics of the ciliated epithelial cells, the cell types of the Cp, Cr and Cu were long-columnar, short-columnar and short-cuboudal, respecptively like the non-ciliated epithelial cells. The stereocilia was long and slender at the Cp and Cr, while Cu was very short. The pinocytotic vesicles and absorptive vesicles were increased from the Cp to the Cu. Numerous disintergrated products was existed at the Cr including the Cp, but Cu were not observed. A significant amount of lysosomes existed at the Cp and Cr epithelial cells, but they were not observed in Cu epithelial cells.

  • PDF

Research on the Non-linear Analysis of Reinforced Concrete Walls Considering Different Macroscopic Models (거시적 모델을 다르게 고려한 철근콘크리트 벽체의 비선형 해석 연구)

  • Shin, Ji-Uk;Kim, Jun-Hee;You, Young-Chan;Choi, Ki-Sun;Kim, Ho-Ryong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.1-11
    • /
    • 2012
  • In this paper, non-linear analysis was performed for Reinforced Concrete (RC) walls using different macroscopic models subjected to cyclic loading, and the analytical results were compared with previous experimental studies of RC walls. ASCE41-06 (American Society of Civil Engineers) specifies that the hysteresis behaviors of RC walls are different due to the aspect ratio of the walls. For a comparison between analytical and experimental results, a slender wall with an aspect ratio exceeding 3.0 and a squat wall with an aspect ratio of 1.0 were selected among previous research works. For the non-linear analysis, each test specimen was modeled using two different macroscopic methods: the first representing the flexural behavior of the RC wall, and the second considering the diagonal shear in the web of the wall. Through nonlinear analysis of the considered RC walls, the analytical difference of a slender wall was negligible due to the different macroscopic modeling methods. However, the squat wall was significantly affected by the considered components of the modeling method. For an accurate performance evaluation of the RC building with squat walls, it would be reasonable to use a macroscopic model considering diagonal shear.

A Study on the Development of Force Limiting Devices of Folded Plate Type (절판형 응력제한 기구의 개발에 관한 연구)

  • Kim, Cheol Hwan;Chae, Won Tak
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.571-579
    • /
    • 2014
  • The steel braces are used to control the lateral drift of high rise buildings. The braces are designed as tensile members since the braces consisted of slender member can not resist compressive loads by elastic buckling. To resolve this problem, a lot of research were performed to develop the non-buckling member. The force limiting device (FLD.) is one of them. The purpose of this study is the development of FLD. to prevent a elastic buckling for a slender member. The folded plate type is proposed to induce the yielding before occurring elastic buckling. In this study, member test and FEM analysis for proposed type were performed. Further, It is verified that the structure with FLD member is stable by high energy absorption. The proposed folded plate type FLD could be effective to preserve the compressive member from the elastic buckling.